Electromagnetic (EM) functional materials play an increasingly important role in solving EM wave pollution in both modern military and civil fields. Graphene‐based materials are the most promising candidates in the applications of EM wave shielding and absorption owing to their remarkable structures and enhanced EM properties. Designing graphene‐based materials with elaborately controlled microstructures and optimized EM properties can effectively improve EM energy attenuation and conversion. Herein, the study begins with the EM attenuation mechanism, and multiscale design strategies of graphene‐based EM functional materials are outlined, including molecular‐scale, micro/nanoscale structure, macroscale structure, and integration of multiscale assembly design strategies. Applications in the EM wave shielding and absorption fields are reviewed, focusing on the latest advances in graphene‐based assemblies such as films, fabrics, and composites. Finally, the current challenges and future directions in this fast‐growing field are predicted.
Bulk graphene nanofilms feature fast electronic and phonon transport in combination with strong light–matter interaction and thus have great potential for versatile applications, spanning from photonic, electronic, and optoelectronic devices to charge-stripping and electromagnetic shielding, etc. However, large-area flexible close-stacked graphene nanofilms with a wide thickness range have yet to be reported. Here, we report a polyacrylonitrile-assisted ‘substrate replacement’ strategy to fabricate large-area free-standing graphene oxide/polyacrylonitrile nanofilms (lateral size ~ 20 cm). Linear polyacrylonitrile chains-derived nanochannels promote the escape of gases and enable macro-assembled graphene nanofilms (nMAGs) of 50–600 nm thickness following heat treatment at 3,000 °C. The uniform nMAGs exhibit 802–1,540 cm2 V−1 s−1 carrier mobility, 4.3–4.7 ps carrier lifetime, and > 1,581 W m−1 K−1 thermal conductivity (nMAG-assembled 10 µm-thick films, mMAGs). nMAGs are highly flexible and show no structure damage even after 1.0 × 105 cycles of folding–unfolding. Furthermore, nMAGs broaden the detection region of graphene/silicon heterojunction from near-infrared to mid-infrared and demonstrate higher absolute electromagnetic interference (EMI) shielding effectiveness than state-of-the-art EMI materials of the same thickness. These results are expected to lead to the broad applications of such bulk nanofilms, especially as micro/nanoelectronic and optoelectronic platforms.
Graphene aerogels with unique properties, such as ultralow density, superelasticity, high specific surface area, and excellent thermal stability, have undergone great progress in the past decades. Especially, super-elastic graphene aerogels provide a highly attention-catching platform for developing advanced energy devices, pressure sensors, contaminates adsorbents, and electromagnetic wave shielding and absorption materials, and so forth. In this review, we begin with the introduction and discussion of various fabrication techniques and compare their advantages and disadvantages, focusing on the template-free assembly process and template-assisted assembly process. Then, we summarize the factors influencing the compressibility and elasticity of graphene aerogels, including intrinsic properties of building blocks, constituent materials, and structure design, and their wide applications. At the end, we discuss the current challenges and future prospects of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.