Fringe projection profilometry (FPP) is widely applied to 3D measurements, owing to its advantages of high accuracy, non-contact, and full-field scanning. Compared with most FPP systems that project visible patterns, invisible fringe patterns in the spectra of near-infrared demonstrate fewer impacts on human eyes or on scenes where bright illumination may be avoided. However, the invisible patterns, which are generated by a near-infrared laser, are usually captured with severe speckle noise, resulting in 3D reconstructions of limited quality. To cope with this issue, we propose a deep learning-based framework that can remove the effect of the speckle noise and improve the precision of the 3D reconstruction. The framework consists of two deep neural networks where one learns to produce a clean fringe pattern and the other to obtain an accurate phase from the pattern. Compared with traditional denoising methods that depend on complex physical models, the proposed learning-based method is much faster. The experimental results show that the measurement accuracy can be increased effectively by the presented method.
Breast cancer is one of the common malignant tumors in women. It seriously endangers women’s life and health. The human epidermal growth factor receptor 2 (HER2) protein is responsible for the division and growth of healthy breast cells. The overexpression of the HER2 protein is generally evaluated by immunohistochemistry (IHC). The IHC evaluation criteria mainly includes three indexes: staining intensity, circumferential membrane staining pattern, and proportion of positive cells. Manually scoring HER2 IHC images is an error-prone, variable, and time-consuming work. To solve these problems, this study proposes an automated predictive method for scoring whole-slide images (WSI) of HER2 slides based on a deep learning network. A total of 95 HER2 pathological slides from September 2021 to December 2021 were included. The average patch level precision and f1 score were 95.77% and 83.09%, respectively. The overall accuracy of automated scoring for slide-level classification was 97.9%. The proposed method showed excellent specificity for all IHC 0 and 3+ slides and most 1+ and 2+ slides. The evaluation effect of the integrated method is better than the effect of using the staining result only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.