Unpredicted human organ level toxicity remains one of the major reasons for drug clinical failure. There is a critical need for cost-efficient strategies in the early stages of drug development for human toxicity assessment. At present, artificial intelligence methods are popularly regarded as a promising solution in chemical toxicology. Thus, we provided comprehensive in silico prediction models for eight significant human organ level toxicity end points using machine learning, deep learning, and transfer learning algorithms. In this work, our results showed that the graph-based deep learning approach was generally better than the conventional machine learning models, and good performances were observed for most of the human organ level toxicity end points in this study. In addition, we found that the transfer learning algorithm could improve model performance for skin sensitization end point using source domain of in vivo acute toxicity data and in vitro data of the Tox21 project. It can be concluded that our models can provide useful guidance for the rapid identification of the compounds with human organ level toxicity for drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.