A light approach to quantum advantage Quantum computational advantage or supremacy is a long-anticipated milestone toward practical quantum computers. Recent work claimed to have reached this point, but subsequent work managed to speed up the classical simulation and pointed toward a sample size–dependent loophole. Quantum computational advantage, rather than being a one-shot experimental proof, will be the result of a long-term competition between quantum devices and classical simulation. Zhong et al. sent 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer and sampled the output using 100 high-efficiency single-photon detectors. By obtaining up to 76-photon coincidence, yielding a state space dimension of about 10 30 , they measured a sampling rate that is about 10 14 -fold faster than using state-of-the-art classical simulation strategies and supercomputers. Science , this issue p. 1460
The development of highly active and stable oxygen evolution reaction (OER) electrocatalysts is crucial for improving the efficiency of water splitting and metal-air battery devices. Herein, an efficient strategy is demonstrated for making the oxygen vacancies dominated cobalt-nickel sulfide interface porous nanowires (NiS /CoS -O NWs) for boosting OER catalysis through in situ electrochemical reaction of NiS /CoS interface NWs. Because of the abundant oxygen vacancies and interface porous nanowires structure, they can catalyze the OER efficiently with a low overpotential of 235 mV at j = 10 mA cm and remarkable long-term stability in 1.0 m KOH. The home-made rechargeable portable Zn-air batteries by using NiS /CoS -O NWs as the air-cathode display a very high open-circuit voltage of 1.49 V, which can maintain for more than 30 h. Most importantly, a highly efficient self-driven water splitting device is designed with NiS /CoS -O NWs as both anode and cathode, powered by two-series-connected NiS /CoS -O NWs-based portable Zn-air batteries. The present work opens a new way for designing oxygen vacancies dominated interface nanowires as highly efficient multifunctional electrocatalysts for electrochemical reactions and renewable energy devices.
The development of highly efficient bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for improving the efficiency of the Zn-air battery. Herein, we report porous NiO/CoN interface nanowire arrays (PINWs) with both oxygen vacancies and a strongly interconnected nanointerface between NiO and CoN domains for promoting the electrocatalytic performance and stability for OER and ORR. Extended X-ray absorption fine structure spectroscopy, electron spin resonance, and high-resolution transmission electron microscopy investigations demonstrate that the decrease of the coordination number for cobalt, the enhanced oxygen vacancies on the NiO/CoN nanointerface, and strongly coupled nanointerface between NiO and CoN domains are responsible for the good bifunctional electrocatalytic performance of NiO/CoN PINWs. The primary Zn-air batteries, using NiO/CoN PINWs as an air-cathode, display an open-circuit potential of 1.46 V, a high power density of 79.6 mW cm, and an energy density of 945 Wh kg. The three-series solid batteries fabricated by NiO/CoN PINWs can support a timer to work for more than 12 h. This work demonstrates the importance of interface coupling and oxygen vacancies in the development of high-performance Zn-air batteries.
We report a facile nitrogenation/exfoliation process to prepare hybrid Ni-C-N nanosheets. These nanosheets are <2 nm thin, chemically stable, and metallically conductive. They serve as a robust catalyst for the hydrogen evolution reaction in 0.5 M HSO, or 1.0 M KOH or 1.0 M PBS (pH = 7). For example, they catalyze the hydrogen evolution reaction in 0.5 M HSO at an onset potential of 34.7 mV, an overpotential of 60.9 mV (at j = 10 mA cm) and with remarkable long-term stability (∼10% current drop after 70 h testing period). They are promising as a non-Pt catalyst for practical hydrogen evolution reaction.
We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. The obtained samples are efficiently validated by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼10 43 , and a sampling rate ∼10 24 faster than using brute-force simulation on classical supercomputers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.