SSZ-13, with a unique pore structure and excellent thermal stability, showed a potential application in the adsorption and catalysis industry. In this work, Al(NO3)3 was used as an Al source to study the performance and morphology of the zeolite. The zeolite was prepared with an unconventional process by adding an Al source before the structure-directing agent and base. When inorganic oxygen-containing anions were introduced into the unconventional synthesis system, the crystals of the zeolite conform to the unconventional growth mode. The zeolites with large crystals were assembled from small unit nanocrystals. Extending the reaction time, aging time and adding fluoride ions introduced a multistage pore structure on the surface of the molecular sieve, which improved the CO2 adsorption performance. When aging for 24 h, reaction for 96 h, and the amount of fluorine added was 0.05 (F/Si), the sample had the best hierarchical pore structure. The SSZ-13 molecular sieve with an added amount of 0.1 (F/Si) has the highest CO2 adsorption performance. The adsorption amount was 4.55 mmol/g at 1 bar, which is 20.4% higher than that of zeolite SSZ-13 prepared by the conventional process.
Because of its unique eight-membered ring pore structure and the arrangement of cations in its structure, the SSZ-13 molecular sieve has a higher affinity for CO2 than other gases, meaning it has attracted more attention than other porous materials for CO2 adsorption. However, the expensive template and long preparation time limits the industrial production of SSZ-13. In this work, a hollow structure was successfully introduced into the nanosized SSZ-13 molecular sieve with ultrasonic treatment. The effects of the amount of seed added and the ultrasonic time on the structure were investigated. When the amount of seed added was 0.5 wt.% and the ultrasonic time was 60 min, the sample showed a hollow cubic crystal with a diameter of about 50 nm. The specific surface area reached 791.50 m2/g, and the mesoporous ratio was 66.3%. The samples were tested for CO2 adsorption performance at 298 K. It was found that the hollow sample prepared in this work has higher CO2 adsorption capacity compared with the SSZ-13 zeolite prepared with conventional methods. When the adsorption pressure was 0.27 bar, the adsorption amount reached 2.53 mmol/g. The hollow SSZ-13 molecular sieve reached a CO2 adsorption capacity of 4.24 mmol/g at 1 bar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.