Visibility graph has established itself as a powerful tool for analyzing time series.
We in this paper develop a novel multiscale limited penetrable horizontal visibility
graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e.,
EEG signals and two-phase flow signals, to demonstrate the effectiveness of our
method. Combining MLPHVG and support vector machine, we detect epileptic seizures
from the EEG signals recorded from healthy subjects and epilepsy patients and the
classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water
two-phase flow signals and find that the average clustering coefficient at different
scales allows faithfully identifying and characterizing three typical oil-water flow
patterns. These findings render our MLPHVG method particularly useful for analyzing
nonlinear time series from the perspective of multiscale network analysis.
Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.
The multiscale phenomenon widely exists in nonlinear complex systems. One efficient way to characterize complex systems is to measure time series and then extract information from the measurements. We propose a reliable method for constructing a multiscale complex network from multivariate time series. In particular, for a given multivariate time series, we first perform a coarse-grained operation to define temporal scales and then reconstruct the multivariate phase-space for each scale to infer multiscale complex networks. In addition, we develop a novel clustering coefficient entropy to assess the derived multiscale complex networks, aiming to characterize the coupled dynamical characteristics underlying multivariate time series. We apply our proposed approach to the analysis of multivariate time series measured from gas-liquid two-phase flow experiments. The results yield novel insights into the inherent coupled flow behavior underlying a realistic multiphase flow system. Bridging multiscale analysis and complex network provides a fascinating methodology for probing multiscale complex behavior underlying complex systems.
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.