Objectives To explore the differences of immune disorders in peripheral blood between patients with early-onset Parkinson's disease (EOPD) and late-onset Parkinson's disease (LOPD). Methods We retrospectively reviewed medical records of Parkinson's disease (PD) patients and healthy controls between June 2002 and July 2017. At last, we included 117 PD patients who were divided into EOPD and LOPD according to whether onset age of PD was after 50 and 99 controls divided into E-Control (match for EOPD) and L-Control (match for LOPD) according to whether their age was after 53 which was onset age plus median of disease duration. We compared the ratios of cells between multiple groups and performed the multinominal logistic regression analysis to explore the relationship between ratios and subtypes of PD. We also carried out the receiver operating characteristic (ROC) curve analysis to estimate the diagnostic value of the variable. Results Lymphocyte-red blood cell ratio (LRR) was lower in LOPD compared with that in EOPD or L-Control. LRR was also negatively associated with LOPD (OR: 0.623; 95% CI: 0.397–0.980; P=0.040). The ROC curve analysis showed the optimal cutoff value of 4.53 (×10−4) of LRR for discrimination of LOPD versus L-Control (sensitivity: 0.596, specificity: 0.764). The area under curve (AUC) was 0.721. As for LOPD versus EOPD, the optimal threshold of LRR was 4.10 (×10−4) (sensitivity: 0.516, specificity: 0.745). AUC was 0.641. Conclusions Peripheral immune disorders might play an important part in the pathological progression of LOPD. Also, LRR has potential diagnostic value.
Background Long non-coding RNAs (lncRNAs) are transcripts thought to regulate gene expression at the post-transcriptional level. Some lncRNAs are associated with Parkinson’s disease (PD) and participate in pathological processes of PD. The incidence of PD is relatively high in members of the Uyghur minority living in Xingjiang province of China. This study measured the expression of lncRNAs in the peripheral blood cells of Chinese Uyghur individuals with and without PD and analyzed the possible function of these lncRNAs in the development of PD. Material/Methods Peripheral blood samples were collected from 55 Uyghur patients with PD and 55 healthy volunteers. Total RNA was extracted, and the levels of expression of whole-genome lncRNAs and mRNAs in 10 samples (5 PD and 5 controls) were determined by microarray method. The expression levels of lncRNAs in all 100 subjects were determined by qRT-PCR. The lncRNA expression profiles of PD patients were determined based on lncRNA microarray chip analysis, and differentially expressed lncRNAs were identified. The results of chip analysis were confirmed in a large clinical cohort. Results Comparison of subjects with and without PD identified 32 significantly up-regulated and 18 significantly down-regulated lncRNAs in the PD group. GO analysis showed that mRNAs encoding proteins involved in the regulation of biological processes were differentially expressed, with the inflammatory immune response being the most significantly related pathway. Conclusions The expression of lncRNAs in peripheral blood differed significantly in PD patients and controls. These differentially expressed lncRNAs may play a role in the development of PD.
Objective. To investigate the role of aberrant Dyrk1a expression in phosphorylation modification at the α-synuclein serine 129 (Ser129) site to analyze its molecular mechanism in mediating apoptosis of PD. Methods. The protein level of P-α-synuclein (Ser129), α-synuclein, Bcl-2, Bax, active caspase 3, GSK3β, PI3K, AKT, and cyclinD1 were detected. The mRNA transcript levels of Dyrk1a and DAT and protein levels of IL-1β, IL-6, COX-2, and TNF-α were detected. Results. P-α-synuclein (Ser129), α-synuclein, Bax, active caspase 3, GSK3β, and cyclinD1 expressions were decreased in Dyrk1a-AAV-ShRNA ( P < 0.05), and Bcl-2, AKT, and PI3K expressions were increased ( P < 0.05). Increased TH protein expression was shown in Dyrk1a-AAV-ShRNA ( P < 0.05). Dyrk1a mRNA was decreased in the Dyrk1a-AAV-ShRNA group ( P < 0.05), and DAT mRNA was increased ( P < 0.05). IL-1β, IL-6, COX-2, and TNF-α protein levels were decreased in Dyrk1al-AAV-Sh-RNA ( P < 0.05). Transcriptome sequencing showed that Fam220a, which was expected to activate STAT family protein binding activity and participate in the negative regulation of transcription through RNA polymerase II and protein dephosphorylation showed differentially upregulated expression. The untargeted metabolome showed that the major compounds in the Dyrk1a-AAV-ShRNA group were hormones and transmission mediators and the most metabolism-related pathways. Fam220a showed differentially upregulated expression, and differentially expressed genes were enriched for the neuroactive ligand-receptor interaction, vascular smooth muscle contraction, and melanogenesis-related pathways. Conclusion. Abnormal Dyrk1a expression can affect α-synuclein phosphorylation modifications, and dyrk1a knockdown activates the PI3K/AKT pathway and reduces dopaminergic neuron apoptosis. It provides a theoretical basis for the group to further investigate the molecular mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.