Introduction of a BINOL-boron moiety to dipyrrolyldiketones as precursors of anion-responsive π-conjugated molecules results in the formation of a chiral environment in the form of anion-free receptors and anion-binding complexes. Conformation changes by inversion (flipping) of two pyrrole rings as a result of anion binding can control the chiroptical properties of the anion receptors. In particular, appropriate pyrrole β-substituents induce distorted receptor π-planes and, as a result, give larger circularly polarized luminescence (CPL), which can be tuned by chemical stimuli (anions). This is the first example of chemical-stimuli-responsive CPL properties.
This short review article summarizes recent progress in research on various stimuli-responsive circularly polarized luminescence (CPL) properties derived from π-conjugated molecules and related materials. As representative examples, assembled structures of chiral π-conjugated polymers and molecules showed tunable CPL resulting from the enhancement of chirality induction by aggregation. Fascinating CPL-active species, pyrrole-based anionresponsive π-conjugated molecules exhibiting CPL induced by anion binding and ion pairing, are also discussed.
Pentacyanocyclopentadienide (PCCp(-) ), a stable π-electronic anion, provided various ion-pairing assemblies in combination with various cations. PCCp(-) -based assemblies exist as single crystals and mesophases owing to interionic interactions with π-electronic and aliphatic cations with a variety of geometries, substituents, and electronic structures. Single-crystal X-ray analysis revealed that PCCp(-) formed cation-dependent arrangements with contributions from charge-by-charge and charge-segregated assembly modes for ion pairs with π-electronic and aliphatic cations, respectively. Furthermore, some aliphatic cations gave dimension-controlled organized structures with PCCp(-) , as observed in the mesophases, for which synchrotron XRD analysis suggested the formation of charge-segregated modes. Noncontact evaluation of conductivity for (C12 H25 )3 MeN(+) ⋅PCCp(-) films revealed potential hole-transporting properties, yielding a local-scale hole mobility of 0.4 cm(2) V(-1) s(-1) at semiconductor-insulator interfaces.
Summary
Porphyrin–Au
III
complexes were found to act as π-electronic cations, which can combine with various counteranions, including π-electronic anions. Single-crystal X-ray analyses revealed the formation of assemblies with contributions of charge-by-charge and charge-segregated assemblies, depending on the geometry and electronic state of the counteranions. Porphyrin–Au
III
complexes possessing aliphatic alkyl chains formed dimension-controlled ion-pairing assemblies as thermotropic liquid crystals, whose ionic components were highly organized by π–π stacking and electrostatic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.