The photophysics and photostability of 9,10-bis(phenylethynyl)anthracene (BPEA) diluted in a 40-nm-thick Zeonex polymer film have been investigated by single-molecule spectroscopy (SMS). The single-molecule detection of BPEA was verified by recording fluorescence intensity trajectories, fluorescence lifetimes, and fluorescence spectra. The intensity trajectories showed frequent on/off blinking and one-step photobleaching behaviors. The observed blinking was attributed to the temporary occupation of the excited triplet state T 1 via intersystem crossing (ISC). Assuming a threestate model (e.g., S 0 , S 1 , and T 1 ), the distributions of triplet lifetime and S 1 AT 1 ISC quantum yield of BPEA were both derived from the analyses of the blinking statistics and the intensity autocorrelation. We found extremely low ISC yields (on the order of 10 25 -10 24 ), which were theoretically rationalized by the large energy gap between 3 B 2u and S 1 ( 1 B 1u )/T 1 ( 3 B 1u ) states. SMS measurements were also conducted under both air and Ar atmospheres in order to gain insight into the influence of oxygen on photobleaching. The results reveal that, although the presence of oxygen considerably degraded the photostability of BPEA, under deoxygenated conditions, BPEA delivers more than 10 7 photons before photobleaching and possesses an appreciably low photobleaching yield of 10 29 -10 28 . This study shows that BPEA has a relatively high degree of photostability at room temperature and can serve as a useful green fluorescent probe for SMS studies.
Newly developed simultaneous scanning photocurrent and luminescence microscopy was applied to ruthenium-based dye-sensitized solar cells (DSCs) comprising a cover glass photoanode with a 100 nm thick TiO2 layer. Using this, we have investigated the lateral variations of several parameters of these DSCs under short-circuit conditions. Simultaneous measurement of photocurrent and luminescence images for the same area of the DSC demonstrated submicrometric lateral resolution of our photocurrent microscopy, which is approximately 10 times better than the resolution of photocurrent microscopy used in past studies. The photovoltaic parameters, such as short-circuit current density, open-circuit voltage, and charge-collection efficiency, were thus evaluated for local (or submicrometric) regions of the DSCs. Furthermore, the photocurrent saturation behavior of the DSCs was examined as a function of the excitation rate and analyzed on the basis of a three-state kinetic model. This protocol allowed for quantification of the dye-adsorption number and dye-regeneration rate constant for any local area of the DSCs. Consequently, the correlations between the dye adsorption number, photovoltaic parameters, and regeneration rate constant, which are difficult to address through examination of the entire cell, were revealed by the "zoom-in" approach utilizing this high-resolution photocurrent microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.