Understanding the dopant properties in heavily doped nanoscale semiconductors is essential to design nanoscale devices. We report the deionization or finite ionization energy of dopants in silicon (Si) nanofilms with dopant concentration (ND) of greater than 10(19) cm(-3), which is in contrast to the zero ionization energy (ED) in bulk Si at the same ND. From the comparison of experimentally observed and theoretically calculated ED, we attribute the deionization to the suppression of metal-insulator transition in highly doped nanoscale semiconductors in addition to the quantum confinement and the dielectric mismatch, which greatly increase ED in low-doped nanoscale semiconductors. Thus, for nanoscale transistors, ND should be higher than that estimated from bulk Si dopant properties in order to reduce their resistivity by the metal-insulator transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.