We present a derivation of the holographic dual of logarithmic negativity in AdS 3 =CFT 2 that was recently conjectured in Phys. Rev. D 99, 106014 (2019). This is given by the area of an extremal cosmic brane that terminates on the boundary of the entanglement wedge. The derivation consists of relating the recently introduced Rényi reflected entropy to the logarithmic negativity in holographic conformal field theories. Furthermore, we clarify previously mysterious aspects of negativity at a large central charge seen in conformal blocks and comment on generalizations to generic dimensions, dynamical settings, and quantum corrections.
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the general CFT 2 with c > 1. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit z → 1, which was unknown until now. In this study, we computed it in general by studying the pole structure of the fusion matrix (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value c−1 12 if the total Liouville momentum exceeds beyond the BTZ threshold. This might be interpreted as a black hole formation in AdS 3 .As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench.We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general n-th Renyi entropy after a local quench and out of time ordered correlators. the OPE associativity.
Moving mirrors have been known as tractable setups modeling Hawking radiation from black holes. In this paper, motivated by recent developments regarding the black hole information problem, we present extensive studies of moving mirrors in conformal field theories by employing both field theoretic as well as holographic methods. Reviewing first the usual field theoretic formulation of moving mirrors, we construct their gravity dual by resorting to the AdS/BCFT construction. Based on our holographic formulation, we then calculate the time evolution of entanglement entropy in various moving mirror models. In doing so, we mainly focus on three different setups: escaping mirror, which models constant Hawking radiation emanating from an eternal black hole; kink mirror, which models an evaporating black hole formed from collapse; and the double escaping mirror, which models two constantly radiating eternal black holes. In particular, by computing the holographic entanglement entropy, we show that the kink mirror gives rise to an ideal Page curve. We also find that an interesting phase transition arises in the case of the double escaping mirror. Furthermore, we argue and provide evidence for an interpretation of moving mirrors in terms of two dimensional Liouville gravity. We also discuss the connection between quantum energy conditions and the time evolution of holographic entanglement entropy in moving mirror models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.