We aimed to monitor greenhouse tomato growth without destructive sampling and investigated an empirical growth model in which dry matter production was obtained as a product of light intercepted by plants and light-use efficiency. The intercepted light values were non-destructively determined on the basis of leaf width and length, and the number of leaves. Light-use efficiency was expressed as a function of daytime CO 2 concentration. Three cultivation experiments were conducted with three tomato cultivars over two years. Significant regression lines and curves, as well as coefficients of the model, were obtained for each cultivar. Using photosynthetic curves of the three cultivars and solar radiation data, we suggest an approach to determine the recommended leaf area index to maximize dry matter production. The developed model has potential to improve yield and labor efficiency in tomato production.
The purpose of this study was to clarify the plant growth and fruit quality of blueberry in a controlled room under artificial light. Cultivars used were a northern highbush 'Blueray', and two southern highbush, 'Misty' and 'Sharpblue'. A comparative study was carried out of growth characteristics, photosynthetic potential and fruit quality analysis in different growing environments, in particular focusing on plants growing in a glasshouse under natural sunlight and plants in a controlled room under artificial light. Environmental conditions of the controlled room under artificial light were 15 to 25°C, 50 to 70% humidity, 150 to 350 μmol·m −2 ·s −1 light intensity, and a 10-hour photoperiod from the primary experiment. In these growing environments, normal fruits developed from all the tested cultivars by successful growth without decreasing plant vigor and leaf photosynthetic ability until fruit harvesting time compared to the cultivars grown in the glasshouse under natural sunlight condition. Moreover, it was confirmed that high-quality fruits could be harvested in a controlled environment to increase fruit production with high SSC % and high anthocyanin content but low acid % in 'Blueray' and 'Misty', but not 'Sharpblue'. Finally, this report presents the possibility of high-quality blueberry production in a controlled environment under artificial light conditions with some cultivars.
This study was conducted to clarify the ecophysiological traits of high-yielding 'Benihoppe' with focus on its dry matter production, plant growth analysis, and leaf photosynthetic rate in comparison with those of 'Toyonoka' and 'Sachinoka'. Total dry matter of 'Benihoppe' was higher than that of 'Toyonoka', while no difference was found between their harvest indices. In 'Benihoppe', the crop growth rate (CGR) and leaf area index (LAI) were higher than those of 'Toyonoka' and 'Sachinoka'. The large LAI of 'Benihoppe' was attributed to its ability to bear larger leaves than other cultivars, while 'Benihoppe' demonstrated a superior net assimilation rate (NAR) to that of 'Toyonoka'. NAR is affected by leaf photosynthetic activity; however, no difference was observed between the leaf photosynthetic rates of 'Benihoppe' and 'Toyonoka'. Petioles in 'Benihoppe' that supported large leaves were longer and upright, and NAR might be affected by their trait, which allow solar radiation to penetrate the plant canopy. Thus, the outstanding CGR in 'Benihoppe' may be a result of the large LAI and upright petioles which allow solar radiation to penetrate the plant canopy.
To clarify the response of net photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (Tr), and leaf intercellular CO2 concentration (Ci) to irradiance on the adaxial and abaxial sides of mature and young strawberry leaves using blue, green, and red light-emitting diodes (LEDs), irradiation from a short distance was investigated using ‘Tochiotome’. Light–photosynthetic response curves of the adaxial side of mature leaves were not different among LED treatments. However, those of the adaxial side of young leaves irradiated with red LEDs were less than those of other LED treatments. Pn of the abaxial side of mature leaves was 42% to 71% of the abaxial side. In young leaves, Pn of the abaxial side was 17% to 68% of the adaxial side. Moreover, light–transpiration response curves were different with LED treatments. Ci and Tr under blue and green LEDs were greater than those under red LEDs. This indicates that blue and green lights affected the stomatal opening. In contrast, red LEDs decreased Ci more than other LED treatments. In addition, reactions of the adaxial side of young leaves under blue and red LEDs were seen not only in ‘Tochiotome’, but also in ‘Sachinoka’ and ‘Eran’, which indicates that the photosynthetic reactions of blue light and red light are common characteristics of the strawberry. Therefore, red LEDs promoted the photochemical reaction and activated the CO2 fixation system. Based on the results of this study of short-distance lighting with LEDs in strawberry production, irradiance of the abaxial side of leaves by blue or green LEDs might improve more assimilates in young leaves compared with red LEDs to increase strawberry yield.
Rapid propagation of Honey orange (Citrus tangerina) was achieved by induction of shoots from epicotyl and cotyledonary node explants and rooting of cotyledonary node derived shoots. Significant explant differences were observed in the induction of direct shoots. Cotyledonary node explant is the most efficient in regeneration frequency followed by epicotyl explant. Cotyledonary node explants cultured on Murashige and Skoog (MS) medium supplemented with 8.88 µM N6-benzyladenine (BA) and 0.54 µM α-naphthaleneacetic acid (NAA) developed more than five shoots per explant. The isolated shoots transferred onto the MS medium supplemented with 5.4 µM NAA rooted 100% within 30 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.