Cyst nematodes (Globodera spp. and Heterodera spp.) are highly evolved sedentary endoparasites that are considered as harmful pests worldwide. The hatching of the dormant eggs of cyst nematodes occurs in response to hatching factors (HFs), which are compounds that are secreted from the roots of host plants. Solanoeclepin A (SEA), a triterpene compound, has been isolated as HF for potato cyst nematode (PCN) eggs, whereas other compounds, such as steroidal glycoalkaloids (SGAs), are also known to show weak hatching stimulation (HS) activity. However, the structures of both compounds are different and the HF-mediated hatching mechanism is still largely unknown. In the present study, we observed specific hatching of PCN eggs stimulated by the hairy root culture media of potato and tomato, revealing the biosynthesis and secretion of HFs. SGAs, such as α-solanine, α-chaconine, and α-tomatine, showed significant HS activity, despite being remarkably less activities than that of SEA. Then, we evaluated the contribution of SGAs on the HS activities of the hairy root culture media. The estimated SGAs content in the hairy root culture media were low and nonconcordant with the HS activity of those, suggesting that the HS activity of SGAs did not contribute much. The analysis of structureactivity relationship revealed that the structural requirements of the HS activity of SGAs are dependent on the sugar moieties attached at the C3-hydoroxyl group and the alkaloid property of their aglycones. The stereochemistry in the EF rings of their aglycone also affected the strength of the HS activity.
The potato cyst nematode (PCN) causes extensive crop losses worldwide. Because the hatching of PCN requires host-derived molecules known as hatching factors (HFs), regulating HF production in host plants may help to control this harmful pest. Solanoeclepin A (SEA), isolated from potato, is the most active HF for PCN; however, its biosynthesis is completely unknown. We discovered a HF called solanoeclepin B (SEB) from potato and tomato root exudates and showed that SEB was biosynthesized in the plant and converted to SEA outside the plant by biotic agents. Moreover, we identified five SEB biosynthetic genes encoding three 2-oxoglutarate-dependent dioxygenases and two cytochrome P450 monooxygenases in tomato. Exudates from tomato hairy roots in which each of the genes was disrupted contained no SEB and had low hatch-stimulating activity for PCN. These findings will help to breed crops with a lower risk of PCN infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.