A series of experiments has been carried out to determine why some alloys display plasticityinduced fatigue crack closure (PIFCC), whereas other alloys display roughness-induced crack closure (RIFCC). Two alloys were studied, the aluminum alloy 6061-T6 (PIFCC) and a steel of comparable yield strength, S25C (RIFCC). The experiments included the determination of the crack-opening levels as a function of DK, da/dN as a function of DK eff -DK effth , removal of the specimen surface layers, removal of the crack wake, the determination of crack front shapes, crack surface roughness profiles, and the degree of lateral contraction in the plastic zone at a crack tip. Based on crack tip opening displacement (CTOD) considerations, it is concluded that PIFCC is favored in alloys of low modulus and relatively low yield strength. In addition, a low strain-hardening rate such as for the 6061 alloy will favor PIFCC. Steels with a higher modulus and a higher strain-hardening rate than 6061 will, in general, exhibit RIFCC, even at comparable yield strength levels. In ferritic steels, the fracture surface roughness and consequently the crack-opening level will increase as the coarseness of the microstructure increases.
In this study, fatigue crack closure behavior was investigated in the aluminum alloy 6061-T6 and the carbon steel JIS. S25C. It was found that crack closure in the aluminum alloy 6061-T6 showed the characteristics of plasticity-induced fatigue crack closure (PIFCC), whereas the carbon steel JIS. S25C showed the characteristics of roughness-induced fatigue crack closure (RIFCC). The experiments included the determination of the crack-opening levelsKopas a function of stress intensity factor range ΔKand the effect of surface removal on the crack-opening level. In order to simulate the behaviors of the plasticity-and the roughness-induced fatigue crack closure, the finite element method was adopted. The results of FEM were in good agreement with the experimental results. It was cconcluded that at a given yield strength level , a low Youngs modulus and a low work-hardening coefficient will favor PIFCC, whereas a high Youngs modulus and a high work-hardening coefficient will favor RIFCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.