Background: Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. Methods: Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl 3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo.
Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide variations and insertions/deletions in exomes of CTCs. These mutations provided information needed for individualized therapy, such as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar CNV patterns in their CTCs. Even more interestingly, patients of smallcell lung cancer have CNV patterns distinctly different from those of ADC patients. Our finding suggests that CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics.cancer diagnostics | personalized therapy A s a genomic disease, cancer involves a series of changes in the genome, starting from primary tumors, via circulating tumor cells (CTCs), to metastases that cause the majority of mortalities (1-3). These genomic alterations include copy number variations (CNVs), single-nucleotide variations (SNVs), and insertions/deletions (INDELs). Regardless of the concentrated efforts in the past decades, the key driving genomic alterations responsible for metastases are still elusive (1).For noninvasive prognosis and diagnosis of cancer, it is desirable to monitor genomic alterations through the circulatory system. Genetic analyses of cell-free DNA fragments in peripheral blood have been reported (4-6) and recently extended to the whole-genome scale (7-9). However, it may be advantageous to analyze CTCs, as they represent intact functional cancer cells circulating in peripheral blood (10). Although previous studies have shown that CTC counting was able to predict progression and overall survival of cancer patients (11,12), genomic analyses of CTCs could provide more pertinent information for personalized therapy (13). However, it is difficult to probe the genomic changes in DNA obtainable from the small number of captured CTCs. To meet this challenge, a single-cell whole-genome amplification (WGA) method, multiple annealing and loopingbased amplification cycles (MALBAC) (14), has been developed to improve the amplification uniformity across the entire genome over previous methods (15,16), allowing precise determination of CNVs and detection of SNVs with a low false-positive rate in a single cell. Here, we present genomic analyses of CTCs from...
Background The COVID‐19 pandemic outbreak might induce acute stress disorder (ASD) to people living in the epidemic regions. The current study aims to investigate the association of COVID‐19‐related stressful experiences with ASD and possible psychological mechanisms of the association among college students. Methods Data were collected from 7,800 college students via an online survey during the initial stage of the COVID‐19 outbreak in China (from 31 January to 11 February 2020). Existing scales were adapted to measure stressful experiences, resilience, coping, social support, and ASD symptoms. Path analysis was employed to examine the research hypotheses. Results Among the 7,800 college students, 61.53% were women and their mean age was 20.54 years. Both direct and indirect effects from COVID‐19‐related stressful experiences to ASD symptoms were significant. The relationship between COVID‐19‐related stressful experiences and ASD could be mediated by resilience ( β = 0.01, p < .001), adaptive coping strategies ( β = 0.02, p < .001), and social support ( β = 0.01, p < .001); while not being significantly mediated by maladaptive coping strategies. Conclusion The findings presented the ASD symptoms related to the COVID‐19 outbreak and the mediating role of interpersonal and intrapersonal factors in the association. Identifying the risk and protective factors is important to reduce acute psychological responses.
The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.