As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.