BackgroundExtracellular accumulation of amyloid β-peptide (Aβ) is one of pathological hallmarks of Alzheimer’s disease (AD) and contributes to the neuronal loss. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress-inducible neurotrophic factor. Many groups, including ours, have proved that MANF rescues neuronal loss in several neurological disorders, such as Parkinson’s disease and cerebral ischemia. However, whether MANF exerts its protective effect against Aβ neurotoxicity in AD remains unknown.MethodsIn the present study, the characteristic expressions of MANF in Aβ1–42-treated neuronal cells as well as in the brains of APP/PS1 transgenic mice were analyzed by immunofluorescence staining, qPCR, and Western blot. The effects of MANF overexpression, MANF knockdown, or recombination human MANF protein (rhMANF) on neuron viability, apoptosis, and the expression of ER stress-related proteins following Aβ1–42 exposure were also investigated.ResultsThe results showed the increased expressions of MANF, as well as ER stress markers immunoglobulin-binding protein (BiP) and C/EBP homologous protein (CHOP), in the brains of the APP/PS1 transgenic mice and Aβ1–42-treated neuronal cells. MANF overexpression or rhMANF treatment partially protected against Aβ1–42-induced neuronal cell death, associated with marked decrease of cleaved caspase-3, whereas MANF knockdown with siRNA aggravated Aβ1–42 cytotoxicity including caspase-3 activation. Further study demonstrated that the expressions of BiP, ATF6, phosphorylated-IRE1, XBP1s, phosphorylated-eIF2α, ATF4, and CHOP were significantly downregulated by MANF overexpression or rhMANF treatment in neuronal cells following Aβ1–42 exposure, whereas knockdown of MANF has the opposite effect.ConclusionsThese findings demonstrate that MANF may exert neuroprotective effects against Aβ-induced neurotoxicity through attenuating ER stress, suggesting that an applicability of MANF as a therapeutic candidate for AD.Electronic supplementary materialThe online version of this article (10.1186/s12974-019-1429-0) contains supplementary material, which is available to authorized users.
SERPINA1/AAT/α-1-antitrypsin (serpin family A member 1) deficiency (SERPINA1/ AAT-D) is an autosomal recessive disorder characterized by the retention of misfolded SERPINA1/AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant reduction of serum SERPINA1/AAT level. The Z variant of SERPINA1/AAT, containing a Glu342Lys (E342K) mutation (SERPINA1E342K/ATZ), the most common form of SERPINA1/AAT-D, is prone to misfolding and polymerization, which retains it in the ER of hepatocytes and leads to liver injury. Both proteasome and macroautophagy/autophagy pathways are responsible for disposal of SERPINA1E342K/ATZ after it accumulates in the ER. However, the mechanisms by which SERPINA1E342K/ATZ is selectively degraded by autophagy remain unknown. Here, we showed that ER membrane-spanning ubiquitin ligase (E3) SYVN1/HRD1 enhances the degradation of SERPINA1E342K/ATZ through the autophagy-lysosome pathway. We found that SYVN1 promoted SERPINA1E342K/ATZ, especially Triton X 100-insoluble SERPINA1E342K/ATZ clearance. However, the effect of SYVN1 in SERPINA1E342K/ATZ clearance was impaired after autophagy inhibition, as well as in autophagy-related 5 (atg5) knockout cells. On the contrary, autophagy induction enhanced SYVN1-mediated SERPINA1E342K/ATZ degradation. Further study showed that SYVN1 mediated SERPINA1E342K/ATZ ubiquitination, which is required for autophagic degradation of SERPINA1E342K/ATZ by promoting the interaction between SERPINA1E342K/ATZ and SQSTM1/p62 for formation of the autophagy complex. Interestingly, SYVN1-mediated lysine 48 (K48)-linked polyubiquitin chains that conjugated onto SERPINA1E342K/ATZ might predominantly bind to the ubiquitin-associated (UBA) domain of SQSTM1 and couple the ubiquitinated SERPINA1E342K/ATZ to the lysosome for degradation. In addition, autophagy inhibition attenuated the suppressive effect of SYVN1 on SERPINA1E342K/ATZ cytotoxicity, and the autophagy inducer rapamycin enhanced the suppressive effect of SYVN1 on SERPINA1E342K/ATZ-induced cell apoptosis. Therefore, this study proved that SYVN1 enhances SERPINA1E342K/ATZ degradation through SQSTM1-dependent autophagy and attenuates SERPINA1E342K/ATZ cytotoxicity.
Xanthatin is a natural sesquiterpene lactone purified from Xanthium strumarium L. , which has shown prominent antitumor activity against a variety of cancer cells. In the current study, we investigated the effect of xanthatin on the growth of glioma cells in vitro and in vivo, and elucidated the underlying mechanisms. In both rat glioma C6 and human glioma U251 cell lines, xanthatin (1–15 μM) dose-dependently inhibited cell viability without apparent effect on the cell cycle. Furthermore, xanthatin treatment dose-dependently induced glioma cell apoptosis. In nude mice bearing C6 glioma tumor xenografts, administration of xanthatin (10, 20, 40 mg·kg −1 ·d −1 , ip, for 2 weeks) dose-dependently inhibited the tumor growth, but did not affect the body weight. More importantly, xanthatin treatment markedly increased the expression levels of the endoplasmic reticulum (ER) stress-related markers in both the glioma cell lines as well as in C6 xenografts, including glucose-regulated protein 78, C/EBP-homologous protein (CHOP), activating factor 4, activating transcription factor 6, spliced X-box binding protein-1, phosphorylated protein kinase R-like endoplasmic reticulum kinase, and phosphorylated eukaryotic initiation factor 2a. Pretreatment of C6 glioma cells with the ER stress inhibitor 4-phenylbutyric acid (4-PBA, 7 mM) or knockdown of CHOP using small interfering RNA significantly attenuated xanthatin-induced cell apoptosis and increase of proapoptotic caspase-3. These results demonstrate that xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating the ER stress-related unfolded protein response pathway involving CHOP induction. Xanthatin may serve as a promising agent in the treatment of human glioma.
Glioma is the most common and aggressive primary brain tumor in adults with high morbidity and mortality. Rapid proliferation and diffuse migration are the main obstacles to successful glioma treatment. Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses a significant antitumor role in several malignant tumors. In this study, we report that xanthatin suppressed glioma cells proliferation and induced apoptosis in a time‐ and concentration‐dependent manner, and was accompanied by autophagy inhibition displaying a significantly reduced LC3 punctate fluorescence and LC3II/I ratio, decreased level of Beclin 1, while increased accumulation of p62. Notably, treating glioma cells with xanthatin resulted in obvious activation of the PI3K‐Akt–mTOR signaling pathway, as indicated by increased mTOR and Akt phosphorylation, decreased ULK1 phosphorylation, which is important in modulating autophagy. Furthermore, xanthatin‐mediated pro‐apoptosis in glioma cells was significantly reversed by autophagy inducers (rapamycin or Torin1), or PI3K‐mTOR inhibitor NVP‐BEZ235. Taken together, these findings indicate that anti‐proliferation and pro‐apoptosis effects of xanthatin in glioma are most likely by inhibiting autophagy via activation of PI3K‐Akt–mTOR pathway, suggesting a potential therapeutic strategy against glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.