In this paper, we propose a novel scheme termed layered orthogonal frequency division multiplexing with index modulation (L-OFDM-IM) to increase the spectral efficiency (SE) of OFDM-IM systems. In L-OFDM-IM, all subcarriers are first divided into multiple layers, each determining the active subcarriers and their modulated symbols. The IM bits are carried on the indices of the active subcarriers of all layers, which are overlapped and distinguishable with different signal constellations so that the number of the IM bits is larger than that in traditional OFDM-IM. A low-complexity detection is proposed to alleviate the high burden of the optimal maximumlikelihood detection at the receiver side. A closed-form upper bound on the BER, the achievable rate and diversity order are derived to characterize the performance of L-OFDM-IM. To enhance the diversity performance of L-OFDM-IM, we further propose coordinate interleaving L-OFDM-IM (CI-L-OFDM-IM), which interleaves the real and imaginary parts of the modulated symbols over two different subchannels. Computer simulations verify the theoretical analysis, whose results show that L-OFDM-IM outperforms the conventional OFDM-IM scheme. Moreover, it is also confirmed that CI-L-OFDM-IM obtains an additional diversity order in comparison with L-OFDM-IM.
Quadrature spatial modulation (QSM) is recently proposed to increase the spectral efficiency (SE) of SM, which extends the transmitted symbols into in-phase and quadrature domains. In this paper, we propose a generalized QSM (GQSM) scheme to further increase the SE of QSM by activating more than one transmit antenna in in-phase or quadrature domain. A low-complexity detection scheme for GQSM is provided to mitigate the detection burden of the optimal maximum-likelihood (ML) detection method. An upper bounded bit error rate is analyzed to discover the system performance of GQSM. Moreover, by collaborating with the non-orthogonal multiple access (NOMA) technique, we investigate the practical application of GQSM to cooperative vehicular networks and propose the cooperative GQSM with OMA (C-OMA-GQSM) and cooperative GQSM with NOMA (C-NOMA-GQSM) schemes. Computer simulation results verify the reliability of the proposed low-complexity detection as well as the theoretical analysis, and show that GQSM outperforms QSM in the entire SNR region. The superior BER performance of the proposed C-NOMA-GQSM scheme make it a promising modulation candidate for next generation vehicular networks.
Index modulation multiple access (IM-MA) is recently proposed to exploit the IM concept to the uplink multiple access system, where multiple users transmit their own signals via the selected time slots. However, the computational complexity of the optimal maximum-likelihood (ML) detection in IM-MA is tremendously high when the number of users or time slots is large. In this letter, we propose a low-complexity detection method for IM-MA, which is inspired by the log likelihood ratio (LLR) algorithm. In addition, because of the heavy search burden for all LLR values, we further propose a suboptimal method to determine the permutation set, which records the number of users allocated to each time slot. Simulation results and the complexity analysis verify that the proposed detection performs closely to the optimal ML detection with reduced computational complexity.
Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.