The perfluoronitrile C4F7N is considered a promising SF6-alternative in high-voltage gas-insulated apparatus, thanks to its high dielectric strength and low global warming potential. However, a complete and consistent set of electron-neutral collision cross-sections of C4F7N is still lacking, which hinders relevant plasma modelling. In this contribution, the available electron-neutral collision cross-sections of C4F7N are first compiled and assessed. The initial cross-sections are adjusted iteratively by the electron swarm method to determine a complete and self-consistent cross-section set of C4F7N for the first time. The set is validated by a systematic comparison of electron swarm parameters between Boltzmann equation analysis and experimental measurements in pure C4F7N as well as C4F7N/N2 and C4F7N/Ar mixtures. The proposed cross-section set of C4F7N will be made available to the community in the LXCat database. It will be of particular importance for applications with an emphasis on the discharge mechanisms of this novel gas.
Recently, C4F7N mixtures have attracted attention as a promising SF6 alternative due to their low global warming potential and excellent electrical performance. In this study, we introduce a newly built experimental setup for pulsed Townsend measurements as well as the physical model for the acquisition of electron swarm parameters. The effective ionization rate coefficients, electron drift velocity, and density-normalized longitudinal diffusion coefficients in C4F7N and its mixtures with CO2 and N2 were obtained. The reduced critical electric field for pure C4F7N at 100 Pa is determined to be 1002 Td, while it decreases with increasing pressure because of the effect of ion kinetics during the discharge process. C4F7N shows good synergism with CO2 and N2. To have a dielectric strength equivalent to that of SF6, the mixing ratio of C4F7N in its mixtures with CO2 and N2 should be 18% and 12%, respectively. The results provide fundamental data for modeling discharges in C4F7N and its mixtures.
The gas mixture CO2–O2 has been considered as an insulation and arc-quenching medium in gas-insulated switchgears. In this paper, the dielectric breakdown properties of CO2–O2 mixtures at different O2 concentrations and gas pressures were studied theoretically by considering ion kinetics in a spatial–temporal growth avalanche model. A kinetic scheme that includes all the main reactions likely to occur in CO2–O2 mixtures is presented. An improved method to calculate the dielectric strength of the gas mixture is developed, based on an avalanche model that considers both spatial growth and temporal processes. Next, the reaction rates of ionization, attachment, detachment and ion conversion, the effective ionization Townsend coefficient αeff/N, and reduced critical electric field strength ( E/N) cr in CO2–O2 mixtures at different mixing ratios and gas pressures are analyzed in detail. Finally, a pulsed Townsend experiment is performed to verify the validity and accuracy of the calculation method. Based on this, one detachment reaction rate is modified to yield more accurate results. Better consistency between the results and the experimental values supports the validity of the kinetic system, reaction rates, and the improved calculation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.