In this paper, we demonstrate a strategy of covalently bonding bioactive molecules onto inorganic hydroxyapatite (HAp) to improve the compatibility between organic and inorganic components and endow the bone composites with sustainable bioactivity. Bone morphogenetic protein-2 (BMP-2) peptide covalently immobilized nano-hydroxyapatite (nHAp-BMP-2) is developed to preserve the bioactivity and slow the release of the BMP-2 peptide. Then nHAp-BMP-2 was further incorporated into an ultraviolet-curable mixture of gelatin methacrylamide (GelMA) and four-armed PEG methacrylamide (four-armed PEGMA) to form a Gel/(nHAp-BMP-2) composite. The hydrogen bonding between gelatin and BMP-2 on nHAp-BMP-2 enhanced the compatibility between inorganic and organic components. The Gel/(nHAp-BMP-2) composite exhibited superior biocompatibility caused by gelatin and nHAp-BMP-2, except in a two-dimensional cell culture, the hydrogel was also capable of a three-dimensional cell culture. In addition, the introduction of nHAp-BMP-2 had a positive influence on bone marrow mesenchymal stem cell proliferation, differentiation, and the subsequent calcification on the composite. After treatment of a rat calvarial defect model for 12 weeks, the Gel/(nHAp-BMP-2) group showed the largest new bone volume and the highest ratio of new bone (50.54 ± 13.51 mm and 64.38 ± 17.22%, respectively) compared to those of the other groups. These results demonstrate that this way of controlling BMP-2 release is effective and the Gel/(nHAp-BMP-2) composite has great potential in bone regeneration therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.