Most of the solutions to existing test selection problems are based on single-objective optimization algorithms and multi-signal models, which maybe lead to some problems such as rough index calculation and large solution set limitations. To solve these problems, a test optimization selection method based on NSGA-3 algorithm and Bayesian network model is proposed. Firstly, the paper describes the improved Bayesian network model, expounds the method of model establishment, and introduces the model's learning ability and processing ability on uncertain information. According to the constraints and objective functions established by the design requirements, NSGA-3 is used to calculate the test optimization selection scheme based on the improved Bayesian network model. Taking a certain component of the missile airborne radar as an example, the fault detection rate and isolation rate are selected as constraints, and the false alarm rate, misdiagnosis rate, test cost, and test quantity are the optimization goals. The method of this paper is used for test optimization selection. It has been verified that this method can effectively solve the problem of multi-objective test selection, and has guiding significance for testability design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.