Advanced polymer composite coatings in the spacecraft are threatened by harsh space environment factors, such as strong UV radiation, atomic oxygen, thermal cycles, space debris, etc. Their service life can be drastically shortened by the unavoidable formation of cracks caused by these factors (especially strong and abundant UV radiation) during longterm flight. Herein, a UV-responsive microcapsule-based coating is developed for in-orbit damage repairing. UVresponsive microcapsules of which the inner polymeric shell can be degraded rapidly by the outer pure TiO 2 shell under UV radiation are produced by UV-initiated polymerization of Pickering emulsions and subsequently embedded into silicon resin matrices. When damaged, some microcapsules will be ruptured under the stimulus of external force, afterward the unbroken ones around the scratched areas will be degraded by UV radiation, as a result, encapsulated healing agents can be released and finally repair cracks. In this system, UV-responsive microcapsules can release more agents more effectively due to the dual release mode, compared with the traditional crackrepairing system. Moreover, the damage of UV radiation in space can be transferred into the favorable ones, which makes it have a potential application in aerospace coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.