Abstract-Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discusse a set of issues, challenges and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.
Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved.Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm, namely, the Lyapunov optimization-based dynamic computation offloading (LODCO) algorithm is proposed, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the instantaneous side information without requiring distribution information of the computation task request, the wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to verify the theoretical analysis as well as validate the effectiveness of the proposed algorithm. Index TermsMobile-edge computing, energy harvesting, dynamic voltage and frequency scaling, power control, QoE, Lyapunov optimization.The authors are with the
Abstract-Mobile-edge computing (MEC) emerges as a promising paradigm to improve the quality of computation experience for mobile devices. Nevertheless, the design of computation task scheduling policies for MEC systems inevitably encounters a challenging two-timescale stochastic optimization problem. Specifically, in the larger timescale, whether to execute a task locally at the mobile device or to offload a task to the MEC server for cloud computing should be decided, while in the smaller timescale, the transmission policy for the task input data should adapt to the channel side information. In this paper, we adopt a Markov decision process approach to handle this problem, where the computation tasks are scheduled based on the queueing state of the task buffer, the execution state of the local processing unit, as well as the state of the transmission unit. By analyzing the average delay of each task and the average power consumption at the mobile device, we formulate a power-constrained delay minimization problem, and propose an efficient one-dimensional search algorithm to find the optimal task scheduling policy. Simulation results are provided to demonstrate the capability of the proposed optimal stochastic task scheduling policy in achieving a shorter average execution delay compared to the baseline policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.