The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID‐19 treatment option. Guided by previous medicinal chemistry studies about SARS‐CoV‐1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β‐(S‐2‐oxopyrrolidin‐3‐yl)‐alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active‐site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS‐CoV‐2‐induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS‐CoV‐2‐induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID‐19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra‐high antiviral potency.
As an essential enzyme of SARS-CoV-2, main protease (M Pro ) triggers acute toxicity to its human cell host, an effect that can be alleviated by an M Pro inhibitor. Using this toxicity alleviation, we developed an effective method that allows a bulk analysis of the cellular potency of M Pro inhibitors. This novel assay is advantageous over an antiviral assay in providing precise cellular M Pro inhibition information to assess an M Pro inhibitor. We used this assay to analyze 30 known M Pro inhibitors. Contrary to their strong antiviral effects and up to 10 μM, 11a, calpain inhibitor II, calpain XII, ebselen, bepridil, chloroquine, and hydroxychloroquine showed relatively weak to undetectable cellular M Pro inhibition potency implicating their roles in interfering with key steps other than just the M Pro catalysis in the SARS-CoV-2 life cycle. Our results also revealed that MPI5, MPI6, MPI7, and MPI8 have high cellular and antiviral potency. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular M Pro inhibition IC 50 value of 31 nM that matches closely to its strong antiviral effect with an EC 50 value of 30 nM. Therefore, we cautiously suggest exploring MPI8 further for COVID-19 preclinical tests.
A recently reported potent inhibitor of enterovirus 71 3C protease, (R)-1, was found to have stability and potential toxicity issues due to the presence of a cyanohydrin moiety. Modifying the labile cyanohydrin moiety, by serendipity, led to the discovery of 4-iminooxazolidin-2-onebased inhibitors 4e and 4g with potent inhibitory activity and significantly improved stability. In vivo pharmacokinetic studies of 4e also demonstrated high plasma exposure and moderate half-life. These compounds have shown potential of becoming anti-EV71 drug candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.