Background: Treatment multiple tumors by immune therapy can be achieved by mobilizing both innate and adaptive immunity. The programmed death ligand 1 (PD-L1; or CD274, B7-H1) is a critical "don't find me" signal to the adaptive immune system. Equally CD47 is a critical "don't eat me" signal to the innate immune system and a regulator of the adaptive immune response. Method: Both of CD47 and PD-L1 are overexpressed on the surface of cancer cells to enable to escape immunesurveillance. We designed EpCAM (epithelial cell adhesion molecule)-targeted cationic liposome (LPP-P4-Ep) containing si-CD47 and si-PD-L1 could target high-EpCAM cancer cells and knockdown both CD47 and PD-L1 proteins. Findings: Efficient silencing of CD47 and PD-L1 versus single gene silencing in vivo by systemic administration of LPP-P4-Ep could significantly inhibited the growth of solid tumors in subcutaneous and reduced lung metastasis in lung metastasis model. Target delivery of the complexes LPP-P4-Ep increased anti-tumor T cell and NK cell response, and release various cytokines including IFN-γ and IL-6 in vivo and in vitro. Interpretation: This multi-nanoparticles showed significantly high-EpCAM tumor targeting and lower toxicity, and enhanced immune therapeutic efficacy. Our data indicated that dual-blockade tumor cell-specific innate and adaptive checkpoints represents an improved strategy for tumor immunotherapy.
Carcinoma metastasis is triggered by a subpopulation of circulating tumor cells (CTCs). And single immune checkpoint therapy is not good enough to inhibit CTC-induced metastasis. Here, we demonstrate that simultaneously blocking CD274 (programmed death ligand 1, PD-L1 or B7-H1) and CD47 checkpoints which were respectively signal of “don’t find me” and “don’t eat me” on CTCs by corresponding antibodies could enhance the inhibition tumor growth than single CD274 or CD47 antibody alone. In vitro flow cytometry data proved that CD47 and CD274 were overexpressed on the tested mouse tumor cell lines. The antibodies could effectively block the expressions of CD47 and CD274 on the cell surface and stably attached to tumor cell surface for several hours. The simultaneous blockade on both CD47 and CD274 checkpoints inhibited tumor growth and CTCs metastasis more potently than a single antibody inhibition or blank control on 4T1 tumor mouse model in vivo. Our results demonstrated that simultaneous dual targeting immune checkpoints, i.e., CD47 and CD274, by using specific antibodies may be more effective as an immunotherapeutics on CTCs than a CD47 or CD274 alone.
Objective: To develop an emergency training program of personal protective equipment (PPE) for general healthcare workers (HCWs) who may be under the threat of Corona Virus Disease 2019 (COVID-19) and evaluate the effect of the program. Methods: A three-stage training program was designed. The complete clinical workflow together with infectious disease ward was simulated. To verify the effect of the program, an experimental training with pre- and post-test was conducted before large-scale training. Results: Post-test scores were significantly improved when compared with the pre-test scores. Among all PPE, N95 respirator and protective coverall needed training most. Meanwhile, “proficiency level” and “mutual check & help” also needed to be strengthened as independent scoring points. Conclusion: This training program significantly improved the performances of participants. It may therefore be applied for general HCWs on a larger scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.