BackgroundThe effect of acute aortic dissection itself on coagulopathy or surgery-related coagulopathy has never been specifically studied. The aim of the present study was to perioperatively describe consumption coagulopathy in patients with acute aortic dissection.MethodsSixty-six patients with acute type A aortic dissection were enrolled in this study from January 2015 to September 2016. Thirty-six patients with thoracic aortic aneurysms were used as a control group during the same period. Consumption coagulopathy was evaluated using standard laboratory tests, enzyme-linked immunosorbent assay and thromboelastograghy at five perioperative time-points.ResultsA significant reduction in clotting factors and fibrinogen was observed at the onset of acute aortic dissection. Enzyme-linked immunosorbent assay and thromboelastograghy also revealed a persistent systemic activation of the coagulation system and the consumption of clotting factors. In contrast, although platelet counts were consistently low, we did not find that platelet function was more impaired in the acute aortic dissection group than the control group.ConclusionsAfter surgery, clotting factors and fibrinogen were more impaired than platelet function. Thus, we proposed that hemostatic therapy should focus on the rapid and sufficient supplementation of clotting factors and fibrinogen to improve consumption coagulopathy in patients with acute aortic dissection.
ObjectivesGenome-wide association studies (GWASs) have revealed many SNPs and genes associated with osteoporosis. However, influence of these SNPs and genes on the predisposition to osteoporosis is not fully understood. We aimed to identify osteoporosis GWASs-associated SNPs potentially influencing the binding affinity of transcription factors and miRNAs, and reveal enrichment signaling pathway and “hub” genes of osteoporosis GWAS-associated genes.MethodsWe conducted multiple computational analyses to explore function and mechanisms of osteoporosis GWAS-associated SNPs and genes, including SNP conservation analysis and functional annotation (influence of SNPs on transcription factors and miRNA binding), gene ontology analysis, pathway analysis and protein-protein interaction analysis.ResultsOur results suggested that a number of SNPs potentially influence the binding affinity of transcription factors (NFATC2, MEF2C, SOX9, RUNX2, ESR2, FOXA1 and STAT3) and miRNAs. Osteoporosis GWASs-associated genes showed enrichment of Wnt signaling pathway, basal cell carcinoma and Hedgehog signaling pathway. Highly interconnected “hub” genes revealed by interaction network analysis are RUNX2, SP7, TNFRSF11B, LRP5, DKK1, ESR1 and SOST.ConclusionsOur results provided the targets for further experimental assessment and further insight on osteoporosis pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.