Slow type anion channels (SLAC/SLAHs) play important roles during anion transport, growth and development, abiotic stress responses and hormone responses in plants. However, there is few report on SLAC/SLAHs in rapeseed (Brassica napus). Genome-wide identification and expression analysis of SLAC/SLAH gene family members were performed in B. napus. A total of 23 SLAC/SLAH genes were identified in B. napus. Based on the structural characteristics and phylogenetic analysis of these members, the SLAC/SLAHs could be classified into three main groups. Transcriptome data demonstrated that BnSLAH3 genes were detected in various tissues of the rapeseed and could be up-regulated by low nitrate treatment in roots. BnSLAC/SLAHs were exclusively localized on the plasma membrane in transient expression of tobacco leaves. These results will increase our understanding of the evolution and expression of the SLAC/SLAHs and provide evidence for further research of biological functions of candidates in B. napus.
Heterotrimeric guanine nucleotide binding protein (G-protein) consisting of Gα, Gβ, and Gγ subunits is one of the key signal transducers in plants. Recent studies indicated that G-protein has been proposed as an important mediator of nitrogen responses in rice, wheat, and Arabidopsis. However, little is known about these G-proteins in Brassica napus (B. napus), except for three identified G-proteins, BnGA1, BnGB1, and BnGG2. Therefore, the aim of the present study is to characterize the members of the G-protein gene family in allotetraploid B. napus and to analyze their expression profiles in response to nitrogen deprivation. In total, 21 G-protein family members were identified in B. napus, encoding two Gα, six Gβ, and 13 Gγ. Sequence and phylogenetic analyses showed that although genome-wide triploid events increased the number of genes encoding Gα, Gβ, and Gγ subunits, the gene structure and protein properties of the genes encoding each G-protein subunit were extremely conserved. Collinearity analysis showed that most G-protein genes in B. napus had syntenic relationships with G-protein members of Arabidopsis, Brassica rape (B. rapa), and Brassica oleracea (B. oleracea). Expression profile analysis indicated that Gα and C-type Gγ genes (except BnGG10 and BnGG12 were highly expressed in flower and ovule) were barely expressed in most organs, whereas most Gβ and A-type Gγ genes tended to be highly expressed in most organs. G-protein genes also showed various expression patterns in response to nitrogen-deficient conditions. Under nitrogen deficiency, Gα and five C-type Gγ genes were upregulated initially in roots, while in leaves, Gα was downregulated initially and five C-type Gγ genes were highly expressed in different times. These results provide a complex genetic dissection of G-protein genes in B. napus, and insight into the biological functions of G-protein genes in response to nitrogen deficiency.
Background: While no significant differences in initial ovule number were found among oilseed rape genotypes, there was a large variation in effective ovule number (EON), which determines the final seeds per silique (SPS), a critical component of yield. Up to date, on study has been focused on unraveling the pre-flowering main factors to restrict EON and identifying the critical period of EON formation among contrasting nitrogen utilization efficiency (NUtE) oilseed rape genotypes.Results: In this study, we selected 18 oilseed rape genotypes with different NUtE to identify the main factors that contribute to EON, and determine if genotypes differed in the critical period of EON formation under both field and pot experiments from 2016-2018. Our results showed the high NUtE genotypes also showed 14.3% higher NUtE, accompanied with 29.4% higher yield per plant and 21.1% higher SPS. The greater productivity of the high NUtE oilseed rape genotypes was associated with 44.1% greater pollen number, 23.5% higher pollen vigor, and 39.3% lower ovule abortion rate, compared to the low NUtE genotypes. In addition, at the heart stage, the high NUtE genotypes displayed higher silique net photosynthetic rate, surface area, biomass, and RNA expression levels, compared to the low NUtE ones. Taken together, this study indicated the pollen number, pollen vigor and ovule abortion rate contributed to the final EON of diverse oilseed rape genotypes; the critical period of determining EON among contrasting NUtE genotypes was at the heart stage.Conclusion: Increasing pollen number and vigor, and decreasing ovule abortion rate before the heart stage should be the prerequisite for breeders to improve yield and NUtE of oilseed rape genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.