Although polymer electrolytes have been regarded as potential separator materials for high energy density solid-state lithiumbased batteries, their applications were significantly restricted by the low ionic conductivity, poor mechanical strength, and thermostability. Herein, a highly conductive and thermostable hybrid polymer electrolyte was developed by combining poly(vinylidene fluoride-co-hexafluoropropylene)-grafted polyrotaxane and nano-Al 2 O 3 particles. In this unique hybrid, not only the Lewis acid-type Al 2 O 3 and the fluorine groups of polyrotaxane branches exhibited strong integration with ionic species to accelerate the dissociation of lithium salt, improving the Li ionic conductivity, but also the abundant hydroxy functional groups on the surface of Al 2 O 3 hydrogenbonded with fluorine-containing branches, enhancing the mechanical strength. More importantly, the hybrid electrolyte exhibited superior thermal stability due to the heat resistance of the ceramic filler and the unique bead string structure of polyrotaxane. Consequently, a polymer electrolyte with a comprehensively improved performance was obtained, including high ionic conductivity and Li + transfer number and superior tensile strength and thermostability. The hybrid electrolyte provided a dendrite-free lithium anode with a long life up to 1800 h and stable solid-state lithium-metal batteries at a high temperature of 80 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.