Abstract. Lestari P, Budiarti A, Fitriana Y, Susilo FX, Swibawa IG, Sudarsono H, Suharjo R, Hariri AM, Purnomo, Nuryasin, Solikhin, Wibowo L, Jumari, Hartaman M. 2020. Identification and genetic diversity of Spodoptera frugiperda in Lampung Province, Indonesia. Biodiversitas 21: 1670-1677. Spodoptera frugiperda is one of the most recent invasive and destructive insect pest in Indonesia. Recently, it has been reported that this pest was found in some cornfield areas in Sumatera, including Lampung. This research was performed to confirm the presence of S. frugiperda in Lampung Province by collecting and identifying larvae of Spodoptera found in the field as well as investigation on the genetic diversity of the established populations and to observe the damage caused by this pest on cornfields in the Lampung Province. The observation was conducted from February-April 2019 at four locations (districts) representing corn-producing areas in Lampung, namely Lampung Selatan, Lampung Timur, Pesawaran and Pringsewu, each location comprising five plots. The plot is a cornfield with plants aged 14-40 days after planting. Twenty plants were randomly chosen in every plot as plant samples to collect the Spodoptera larvae and to calculate the absolute plant damage caused by the larvae. The absolute plant damage was analyzed by dividing the attacked plants with total plants observed and multiply by 100%. Identification of the Spodoptera larvae was performed based on morphological characters and molecular techniques using sequence analysis of Cytochrome c Oxidase subunit I (COI) gene. The result confirmed that the larvae found in the cornfield in Lampung were S. frugiperda. There was no nucleotides variation in the sequence of COI gene among S. frugiperda found in Lampung Province (Lampung Selatan, Lampung Timur, Pesawaran and Pringsewu) as well as S. frugiperda that was found in corn from foreign countries. The absolute plant damage caused by this pest in the four districts of Lampung was in the range of 26.50-70%.
The application of entomopathogenic fungi such as Isaria fumosorosea to combat insect pests on plants is complicated by their sensitivity to commonly used fungicides. In this study, I. fumosorosea mutants with enhanced resistance to the fungicide benomyl were induced by irradiation using either ion beams or gamma rays, or a combination of the two. When grown on agar containing benomyl, mycelial growth was observed for five of the six mutant isolates at benomyl concentrations that were more than 2000-fold those observed for the wild-type isolate (EC50 : > 5000 mg L(-1) c.f. EC50 : 2.5 mg L(-1) for the wild-type isolate). The mutant isolates evaluated also showed enhanced resistance to other fungicides at recommended field application rates. No differences were observed at the β-tubulin locus between the wild-type and the mutant isolates, suggesting that the enhanced benomyl resistance was not attributable to mutations in that gene. Ion beams and gamma rays are thus potentially useful tools for inducing beneficial fungal mutations and thereby improving the potential for application of entomopathogenic fungi as microbial control agents.
The White-Bellied Planthopper (Hemiptera: Delphacidae) Infesting Corn Plants in South Lampung, Indonesia. Corn plants in South Lampung were infested by newly-found delphacid planthoppers. The planthopper specimens were collected from heavily-infested corn fields in Natar area, South Lampung. We identified the specimens as the white-bellied planthopper Stenocranus pacificus Kirkaldy (Hemiptera: Delphacidae), and reported their field population abundance.
Background Spodoptera litura Fabricius (Lepidoptera: Noctuidae) is an important pest causing severe damage to many cultivating plants such as corn worldwide, including Indonesia. This study was performed to obtain and identify entomopathogenic fungi (EPF) of S. litura collected from corn fields in 4 corn producing regions of Lampung, Indonesia, as well as to investigate the damage caused by this pest on corn in Lampung Province. Results Three corn fields in each region were selected for collecting soil samples. Soil samples were collected from 5 corn plant rhizospheres, at each field in six months of survey. Ten larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae) were laid on each soil sample as a bait, covered with a filter paper and incubated at room temperature. The emerging fungi from T. molitor cadaver were transferred onto Potato Dextrose Agar (PDA) medium and incubated for 7 days at room temperature. Pathogenicity test was determined against 3rd instar of S. litura larvae. Identification was performed based on the sequence of Internal Transcribed Spacer (ITS) Region. Observations on the corn damage caused by S. litura were conducted at all corn producing areas in Lampung. Twelve fungal isolates were obtained causing 0–75% of mortality of S. litura. Four fungal isolates (NKPT, SKHJ, SDHJ and RAHJ), which caused mortality more than 20%, were further identified. One isolate (NKPT) was confirmed as Beauveria bassiana and the other 3 isolates (SKHJ, SDHJ and RAHJ) were Aspergillus oryzae. S. litura generally caused slight damages to the corn which was found in every observation year performed during 2010–2019. Medium plant damage was observed in 2010–2012 and 2018–2019, severe damage was found in 2011 and crop failure was recorded in 2018. Conclusions Aspergillus oryzae and B. bassiana were the EPF recorded infecting S. litura in corn in Lampung Province. This was the first report on the isolates of A. oryzae as EPF of S. litura in Indonesia. Slight damages with S. litura were always recorded in every observation year but not for those of medium and severe damages and crop failure.
This study was performed to identify Peronosclerospora species found in Indonesia based on sequence analysis of the cox2 gene. In addition, sequence data in total, 26 isolates of Peronosclerospora were investigated in this study. They were obtained from 7 provinces in Indonesia, namely Lampung, Jawa Timur, Jawa Barat, Sumatera Utara, Jawa Tengah, Yogyakarta, and Sulawesi Selatan. Sequence analysis of cox2 and phylogenetic inference were performed on all the 26 isolates. A set of primers developed in this study, PCOX2F and PCOX2R, was used for PCR amplification. Phylogenetic analyses showed that all the Indonesian isolates were divided into two groups. Group I contained 13 isolates; 9 isolates obtained from Lampung, 3 isolates from Sumatera Utara, and 1 isolate from Jawa Barat. Group II consisted of 13 isolates; 7 isolates from Jawa Timur, 2 isolates from Jawa Tengah, 1 isolate from Yogyakarta, and 3 isolates from Sulawesi Selatan. All the members of group I clustered with the ex-type sequence of P. australiensis. Meanwhile, all members of Group II formed the sister clade of isolates obtained from Timor-Leste and may represent P. maydis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.