Depression is an undetectable mental disease. Most of the patients with depressive symptoms do not know that they are suffering from depression. Since the novel Coronavirus pandemic 2019, the number of patients with depression has increased rapidly. There are two kinds of traditional depression diagnosis. One is that professional psychiatrists make diagnosis results for patients, but it is not conducive to large-scale depression detection. Another is to use electroencephalography (EEG) to record neuronal activity. Then, the features of the EEG are extracted using manual or traditional machine learning methods to diagnose the state and type of depression. Although this method achieves good results, it does not fully utilize the multi-channel information of EEG. Aiming at this problem, an EEG diagnosis method for depression based on multi-channel data fusion cropping enhancement and convolutional neural network is proposed. First, the multi-channel EEG data are transformed into 2D images after multi-channel fusion (MCF) and multi-scale clipping (MSC) augmentation. Second, it is trained by a multi-channel convolutional neural network (MCNN). Finally, the trained model is loaded into the detection device to classify the input EEG signals. The experimental results show that the combination of MCF and MSC can make full use of the information contained in the single sensor records, and significantly improve the classification accuracy and clustering effect of depression diagnosis. The method has the advantages of low complexity and good robustness in signal processing and feature extraction, which is beneficial to the wide application of detection systems.
Reasonable exercise is beneficial to human health. However, it is difficult for ordinary athletes to judge whether they are already in a state of fatigue that is not suitable for exercise. In this case, it is easy to cause physical damage or even life-threatening. Therefore, to health sports, protecting the human body in sports not be injured by unreasonable sports, this study proposes an exercise fatigue diagnosis method based on short-time Fourier transform (STFT) and convolutional neural network (CNN). The method analyzes and diagnoses the real-time electrocardiogram, and obtains whether the current exerciser has exercise fatigue according to the electrocardiogram. The algorithm first performs short-time Fourier transform on the electrocardiogram (ECG) signal to obtain the time spectrum of the signal, which is divided into training set and validation set. The training set is then fed into the convolutional neural network for learning, and the network parameters are adjusted. Finally, the trained convolutional neural network model is applied to the test set, and the recognition result of fatigue level is output. The validity and feasibility of the method are verified by the ECG experiment of exercise fatigue degree. The experimental recognition accuracy rate can reach 97.70%, which proves that the constructed sports fatigue diagnosis model has high diagnostic accuracy and is feasible for practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.