Background: The aggressiveness of pancreatic ductal adenocarcinoma (PDAC) is enhanced by its interactions with stromal extracellular matrix, notably with hyaluronan (HA). Our previous studies have demonstrated increased expression of genes involved in HA synthesis and degradation in PDAC, suggesting the presence of an autocrine mechanism which accelerates the production of low-molecular-weight HA. Results: A subset of PDAC (20% of cell lines and 25% of tissues) showed overexpression of multiple genes encoding both HA-synthesizing and HA-degrading enzymes, displaying a phenotype defined as an HA activated-metabolism phenotype (HAMP). Interestingly, HAMP+ cells were more susceptible to the treatment with an HA synthesis inhibitor and HA degradation inhibitor than HAMP- cells. Patients with HAMP+ tumors were significantly associated with shorter survival than those with HAMP- tumors (P = 0.049). Methods: We investigated transcriptional profiling of genes involved in HA synthesis (including HAS2 and HAS3) and degradation (including HYAL1 and KIAA1199) in a panel of PDAC cell lines and primary tissues. Response of PDAC cells to treatment with an HA synthesis inhibitor (4-methylumbelliferone) or HA degradation inhibitor (dextran sulfate) was examined by cell migration assay. Survival was determined by Kaplan–Meier curve and compared by log-rank test. Conclusions: The present study identified a novel phenotype, HAMP, characterized by activation of HA metabolism pathways, in PDAC. HAMP should be further investigated as a prognostic marker as well as a target for personalized medicine.
Pancreatic ductal adenocarcinoma (PDAC) is characterised by dense desmoplasia and hypoxic microenvironment. Our previous reports demonstrated that hyaluronan (HA), especially low-molecular-weight HA, provides a favourable microenvironment for PDAC progression. However, the effect of hypoxia on HA metabolism remains unknown. Using quantitative real-time RT-PCR and western blot analysis, we analysed the changes in the expression of HA-synthesizing enzymes (HAS2 and HAS3) and HA-degrading enzymes (HYAL1, KIAA1199/CEMIP) in PDAC cell lines under hypoxic conditions. Hypoxia increased the mRNA and protein expression of KIAA1199, whereas it decreased HYAL1 expression. The expression of HAS3 was increased and HAS2 remained unchanged in response to hypoxia. The effect of KIAA1199 on hypoxia-induced cell migration was determined using a transwell migration assay and small-interfering RNA (siRNA). Hypoxia enhanced the migratory ability of PDAC cells, which was inhibited by KIAA1199 knockdown. We also used immunohistochemistry to analyse the protein expression of hypoxia inducible factor (HIF) 1α and KIAA1199 in PDAC tissues. There was a significant immunohistochemically positive correlation between KIAA1199 and HIF1α. These findings suggest that hypoxia-induced KIAA1199 expression may contribute to enhanced motility in PDAC.
Our results suggest that gender, prior history of upper abdominal surgery, and white blood cell count can predict the likelihood of requiring an additional port in SILC.
Background/Aim: Hyaluronic acid (HA) is a large glycosaminoglycan composed of an extracellular matrix. The HA-rich microenvironment and receptors of HA have been suggested to play roles in cancer progression. The biological and clinical significance of receptor for HA-mediated motility (RHAMM), known as CD168 in prostate cancer (PC) remains unknown. This study aimed to investigate the expression of RHAMM, as well as its functional and clinical relevance in PC. Materials and Methods: HA concentration and RHAMM mRNA expression were examined in 3 PC cell lines (LNCaP, PC3 and DU145). We investigated the effect of HA and RHAMM on the migratory ability of PC cells using a transwell migration assay. Immunohistochemistry was also used to evaluate the RHAMM expression pattern in pre-treatment tissue samples from 99 patients with metastatic hormone-sensitive PC (HSPC) who received androgen deprivation therapy (ADT). Results: HA was secreted in all cultured PC cell lines. Among the total HA, lowmolecular-weight HA (LMW-HA) (<100 kDa) was detected all examined cell lines. The number of migration cells was significantly increased by adding LMW-HA. RHAMM mRNA expression was increased in DU145 cells. Knockdown of RHAMM using small-interfering RNA resulted in decreased cell migration. Immunohistochemical analysis revealed strong RHAMM expression in 31 (31.3%) patients with metastatic HSPC. A strong RHAMM expression was significantly associated with short ADT duration and poor survival in univariate and multivariate analyses. Conclusion: The size of HA is important in terms of PC progression. LMW-HA and RHAMM enhanced PC cell migration. RHAMM could be used as a novel prognostic marker in patients with metastatic HSPC.Androgen deprivation therapy (ADT) is a gold-standard treatment for patients with metastatic prostate cancer (PC). Metastatic hormone-sensitive PC (HSPC) progresses to castration-resistant PC (CRPC) despite a favorable initial ADT response. Recently, guidelines recommended a combination of abiraterone, apalutamide, or enzalutamide with ADT as firstline therapy for patients with metastatic HSPC (1, 2). However, a large retrospective study using real-world data in the United States revealed that approximately 43% of patients received ADT alone as first-line therapy for metastatic HSPC (3). Additionally, we previously demonstrated that some patients with metastatic HSPC achieved long-term survival under ADT alone (4). Therefore, biomarkers to effectively predict primary ADT response are required.The microenvironment surrounding the tumor cells plays an important role in cancer progression. Hyaluronic acid (HA) is a large glycosaminoglycan composed of an extracellular matrix. A previous study revealed that HA-rich stroma promotes tumor progression in various cancer cells (5-7). HA was detected relatively frequently and abundantly 203
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.