Although bone tissues possess an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as fracture non-union, osteoporosis, osteomyelitis, and cancers. In these cases, treatments like surgical interventions are used, either alone or in combination with bioactive agents, to promote tissue repair and manage associated clinical complications. Improving the efficacy of bioactive agents often requires carriers, with biomaterials being a pivotal player. In this review, we discuss the role of biomaterials in realizing the local and systemic delivery of biomolecules to the bone tissue. The versatility of biomaterials enables design of carriers with the desired loading efficiency, release profile, and on-demand delivery. Besides local administration, systemic administration of drugs is necessary to combat diseases like osteoporosis, warranting bone-targeting drug delivery systems. Thus, chemical moieties with the affinity towards bone extracellular matrix components like apatite minerals have been widely utilized to create bone-targeting carriers with better biodistribution, which cannot be achieved by the drugs alone. Bone-targeting carriers combined with the desired drugs or bioactive agents have been extensively investigated to enhance bone healing while minimizing off-target effects. Herein, these advancements in the field have been systematically reviewed.
In this work, we describe the use of a single-unit trilayer scaffold with depth-varying pore architecture and mineral environment to engineer osteochondral tissues in vivo. The trilayer scaffold was designed to support continued differentiation of the donor cells to form cartilage tissue while supporting bone formation through recruitment of endogenous cells. When implanted in vivo, these trilayer scaffolds partially loaded with cells resulted in the formation of osteochondral tissue with a lubricin-rich cartilage surface. Approaches such as the one presented here that integrates ex vivo tissue engineering along with endogenous cell-mediated tissue engineering can have a significant impact in tissue engineering composite tissues with diverse cell populations and functionality.
We have designed and fabricated a nanocomposite substrate that can deliver spatially and temporally defined mechanical forces onto cells. This nanocomposite substrate comprises a 1.5-mm-thick near-infrared (NIR) mechanoresponsive bottom layer of few-walled carbon nanotubes (FWCNTs) that are uniformly distributed and covalently connected to thermally responsive poly(N-isopropylacrylamide) and an approximately 0.15-mm-thick cell-seeding top layer of collagen-functionalized poly(acrylic acid)-co-poly(N-isopropylacrylamide) that interpenetrates into the bottom layer. Covalent coupling of all the components and uniform distribution of FWCNTs lead to a large local mechanoresponse. As an example, 50% change in strain at the point of irradiation on the order of 0.05 Hz can be produced reversibly under NIR stimulation with 0.02 wt % FWCNTs. We have further demonstrated that the mechanical strain imposed by NIR stimulation can be transmitted onto cells. Human fetal hepatocytes change shape with no sign of detrimental effect on cell viability. To the best of our knowledge, this is the first demonstration of a nanocomposite platform that can generate fast and controlled mechanical force to actuate cells. Since the amplitude, location, and timing of force can be controlled remotely with NIR, the nanocomposite substrate offers the potential to provide accurately designed force sequences for tissue engineering.
Approaches that enable innate repair mechanisms hold great potential for tissue repair. Herein, biomaterial‐assisted sequestration of small molecules is described to localize pro‐regenerative signaling at the injury site. Specifically, a synthetic biomaterial containing boronate molecules is designed to sequester adenosine, a small molecule ubiquitously present in the human body. The biomaterial‐assisted sequestration of adenosine leverages the transient surge of extracellular adenosine following injury to prolong local adenosine signaling. It is demonstrated that implantation of the biomaterial patch following injury establishes an in situ stockpile of adenosine, resulting in accelerated healing by promoting both osteoblastogenesis and angiogenesis. The adenosine content within the patch recedes to the physiological level as the tissue regenerates. In addition to sequestering endogenous adenosine, the biomaterial is also able to deliver exogenous adenosine to the site of injury, offering a versatile solution to utilizing adenosine as a potential therapeutic for tissue repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.