A new method to determine directly the solid fraction using the cooling curve was proposed for solidification of undercooled melts. Then, to construct three different baselines, a sudden function n a (x) is introduced. In terms of the n a (x) function, accordingly, the solid fractions during solidification of Ni-3.3 wt pct B, Al-7 wt pct Si, Al-14 wt pct Cu, and Fe-4.56 wt pct Ni alloys were predicted. The predictions of the primary, the regular lamellar eutectic, the anomalous eutectic, and the peritectic phases from cooling curves of the solidified samples coincide with the results of measurement or the available methods.
Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.
Adopting glass fluxing and cyclic superheating, high undercooling up to ∼550 K was achieved in bulk eutectic Ni78.6Si21.4 alloy melt. With increasing undercooling, the as-solidified microstructure shows an interesting evolution, i.e., regular lamellar eutectic, coarse directional dendrite, quasi-spherical dendritic colony, fine directional dendrite, fine quasi-spherical dendritic colony, and superfine anomalous eutectic. In combination with different theories for nucleation and growth, the microstructure evolution was analyzed and described using competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy. For undercooling below and above 180 K, Ni3Si, and α-Ni are primarily solidified, respectively. This phase selection can be ascribed to competitive nucleation. As undercooling increases, a transition of the prevalent nucleation mode from site saturation to continuous nucleation was interpreted in terms of competition of nucleation mode. Accordingly, the superfine anomalous eutectic is obtained, due to the substantially increased continuous nucleation rate, i.e., grain refinement occurring at high undercooling (e.g., ∼550 K).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.