Computational tools for integrative analyses of diverse single-cell experiments are facing formidable new challenges including dramatic increases in data scale, sample heterogeneity, and the need to informatively cross-reference new data with foundational datasets. Here, we present SCALEX, a deep-learning method that integrates single-cell data by projecting cells into a batch-invariant, common cell-embedding space in a truly online manner (i.e., without retraining the model). SCALEX substantially outperforms online iNMF and other state-of-the-art non-online integration methods on benchmark single-cell datasets of diverse modalities, (e.g., single-cell RNA sequencing, scRNA-seq, single-cell assay for transposase-accessible chromatin use sequencing, scATAC-seq), especially for datasets with partial overlaps, accurately aligning similar cell populations while retaining true biological differences. We showcase SCALEX’s advantages by constructing continuously expandable single-cell atlases for human, mouse, and COVID-19 patients, each assembled from diverse data sources and growing with every new data. The online data integration capacity and superior performance makes SCALEX particularly appropriate for large-scale single-cell applications to build upon previous scientific insights.
Ochratoxin A (OTA) and Zearalenone (ZEA) are widespread mycotoxins that contaminate foodstuffs simultaneously, but sufficient data regarding their mixed toxicities are lacking. This study aims to analyze the style of combined effects of OTA and ZEA on cells of their target organs. For this purpose, cytotoxicity was determined in HepG2 and KK-1 cells treated with single and combined forms of OTA and ZEA. Furthermore, we have analyzed the data using two mathematical models based on the concepts of concentration addition (CA) and independent addition (IA). By analyzing data with nonlinear regression, toxins applied singly showed classic sigmoid dose-response curves in HepG2 cells whereas in KK-1 cells hormetic responses were observed. Exposure to equieffective mixtures of OTA and ZEA showed additive effects, irrespective of different nonlinear regression models used. Our results demonstrate that IA is an appropriate concept to account for mixture effects of OTA and ZEA. The results in ROS generation indicate a departure from additivity to antagonism or synergism at different concentrations, probably due to potential interaction during ROS production. This study shows that a risk assessment of mycotoxins should account for mixture effects, and prediction models are valuable tools for mixture assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.