We introduce a new type of distributional constraints called ratio constraints, which explicitly specify the required balance among schools in two-sided matching. Since ratio constraints do not belong to the known well-behaved class of constraints called M-convex set, developing a fair and strategyproof mechanism that can handle them is challenging. We develop a novel mechanism called quota reduction deferred acceptance (QRDA), which repeatedly applies the standard DA by sequentially reducing artificially introduced maximum quotas. As well as being fair and strategyproof, QRDA always yields a weakly better matching for students compared to a baseline mechanism called artificial cap deferred acceptance (ACDA), which uses predetermined artificial maximum quotas. Finally, we experimentally show that, in terms of student welfare and nonwastefulness, QRDA outperforms ACDA and another fair and strategyproof mechanism called Extended Seat Deferred Acceptance (ESDA), in which ratio constraints are transformed into minimum and maximum quotas. This paper is based on our conference paper [45]. Main differences are: an extended study of QRDA's axiomatic properties (weak non-bossiness, weak Maskin monotonicity, weak group strategyproofness, weak Pareto optimality, and Theorem 7), and an extended comparison with existing mechanisms for distributional constraints (theoretically with Theorem 12 and experimentally with simulation on Borda scores).
We investigate markets with a set of students on one side and a set of colleges on the other. A student and college can be linked by a weighted contract that defines the student's wage, while a college's budget for hiring students is limited. Stability is a crucial requirement for matching mechanisms to be applied in the real world. A standard stability requirement is coalitional stability, i.e., no pair of a college and group of students has any incentive to deviate. We find that a coalitionally stable matching is not guaranteed to exist, verifying the coalitional stability for a given matching is coNP-complete, and the problem of finding whether a coalitionally stable matching exists in a given market, is SigmaP2-complete: NPNP-complete. Other negative results also hold when blocking coalitions contain at most two students and one college. Given these computational hardness results, we pursue a weaker stability requirement called pairwise stability, where no pair of a college and single student has an incentive to deviate. Unfortunately, a pairwise stable matching is not guaranteed to exist either. Thus, we consider a restricted market called a typed weighted market, in which students are partitioned into types that induce their possible wages. We then design a strategy-proof and Pareto efficient mechanism that works in polynomial-time for computing a pairwise stable matching in typed weighted markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.