In this paper we study the optimal dividend problem for a company whose surplus process evolves as a spectrally positive Lévy process before dividends are deducted. This model includes the dual model of the classical risk model and the dual model with diffusion as special cases. We assume that dividends are paid to the shareholders according to an admissible strategy whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. We show that the optimal dividend strategy is formed by a threshold strategy.
In this paper we consider a modified version of the classical optimal dividends problem of de Finetti in which the dividend payments subject to a penalty at ruin. We assume that the risk process is modeled by a general spectrally positive Lévy process before dividends are deducted. Using the fluctuation theory of spectrally positive Lévy processes we give an explicit expression of the value function of a barrier strategy. Subsequently we show that a barrier strategy is the optimal strategy among all admissible ones. Our work is motivated by the recent work of Bayraktar, Kyprianou and Yamazaki (2013).
We consider in this paper a general two-sided jump-diffusion risk model that allows for risky investments as well as for correlation between the two Brownian motions driving insurance risk and investment return. We first introduce the model and then find the integro-differential equations satisfied by the Gerber-Shiu functions as well as the expected discounted penalty functions at ruin caused by a claim or by oscillation; We also study the dividend problem for the threshold and barrier strategies, the moments and moment-generating function of the total discounted dividends until ruin are discussed. Some examples are given for special cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.