The application method for a novel bioorganic fertilizer (BIO) was developed to improve its biocontrol efficacy of Fusarium wilt (Ling et al. 2010). However, its efficacy on controlling Fusarium wilt and the variations of microbial community after long-term application for watermelon production had not been elucidated. To clarify, a 4-years pot experiment of mono-cropping watermelon was conducted. The results revealed that though the disease incidences were increased in all treatments with the increase of continuous cropping years, the treatment of BIO application both in nursery and pot soil always maintained the lowest disease incidence. The real-time PCR results showed that the population of Paenibacillus polymyxa was decreased with continuous cropping years, but in all seasons, the treatment with BIO application both in nursery and pot soil had a highest population of P. polymyxa than the other treatments. On the other hand, the abundance of the pathogen FON was increased with the increase of continuous cropping years and the lowest rate of increase was found by BIO application in both nursery and pot soil. DGGE patterns showed that the bacterial diversity was weakened after mono-cropping of watermelon for 4 years, but the consecutive applications of BIO at nursery and transplanting stage resulted in the minimal change of bacterial diversity. More detailed differences on bacterial diversity between control and double application of BIO treatment after 4-years monoculture were analyzed by 454 pyrosequencing, which showed the dominant phyla found in both samples were Firmicutes, Proteobacteria and Actinobacteria, and the consecutive applications of BIO recruited more beneficial bacteria than control, such as Bacillus, Paenibacillus, Haliangium, Streptomyces. Overall, these results, to a certain extent, approved that the consecutive applications of BIO at nursery and transplanting stage could effectively suppress watermelon Fusarium wilt by regulating the rhizosphere bacterial diversity. These results could give some clues that how to regulate the soil microbial community to an appropriate level which can keep the plant healthy and thus control the soil-borne diseases.
Caffeic acid is a plant phenolic
compound possessing extensive
pharmacological activities. Here, we identified that p-coumaric acid 3-hydroxylase from Arabidopsis thaliana was capable of hydroxylating p-coumaric acid to
form caffeic acid in Saccharomyces cerevisiae. Then,
we introduced a combined caffeic acid biosynthetic pathway into S. cerevisiae and obtained 0.183 mg L–1 caffeic acid from glucose. Next we improved the tyrosine biosynthesis
in S. cerevisiae by blocking the pathway flux
to aromatic alcohols and eliminating the tyrosine-induced feedback
inhibition resulting in caffeic acid production of 2.780 mg L–1. Finally, the medium was optimized, and the highest
caffeic acid production obtained was 11.432 mg L–1 in YPD medium containing 4% glucose. This study opens a route to
produce caffeic acid from glucose in S. cerevisiae and establishes a platform for the biosynthesis of caffeic acid
derived metabolites.
The cotton aphid, Aphis gossypii (Hemiptera: Aphididae), is a serious pest of cotton across the globe, particularly in the cotton agroecosystems of northern China. Parasitic wasps are deemed to be important natural enemies of A. gossypii, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, we combine sampling over a broad geographical area with intensive field trials over the course of three cropping seasons to describe parasitoid-hyperparasitoid communities in cotton crops. We delineate a speciose complex of primary parasitoids and hyperparasitoids associated with A. gossypii. Over 90% of the primary parasitoids were Binodoxys communis. Syrphophagus sp. and Pachyneuron aphidis made up most of the hyperparasitoids. Parasitism rates changed in a similar way following the fluctuation of the aphid population. Early in the growing period, there were more hyperparasitoids, while later, the primary parasitoids provided control of A. gossypii. The first systematic report of this cotton aphid parasitoid complex and their population dynamics in association with their hosts presented a comprehensive assessment of cotton parasitoid species and provided important information for the establishment and promotion of their biological control of cotton aphids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.