Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease, and metabolomics plays a hub role in predictive, preventive, and personalized medicine (PPPM) related to COPD. This study thus aimed to reveal the role of induced sputum metabolomics in predicting COPD severity. In this pilot study, a total of 20 COPD patients were included. The induced sputum metabolites were assayed using a liquid chromatography-mass spectrometry (LC-MS/MS) system. Five oxidative stress products (myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), neutrophil elastase (NE), and 8-iso-PGF2α) in induced sputum were measured by ELISA, and the metabolomic profiles were distinguished by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis, and a significant difference in induced sputum metabolomics was observed between moderate and severe COPD. The KEGG analysis revealed that the glycerophospholipid metabolism pathway was downregulated in severe COPD. Due to the critical role of glycerophospholipid metabolism in oxidative stress, significant negative correlations were discovered between glycerophospholipid metabolites and three oxidative stress products (SOD, MPO, and 8-iso-PGF2α). The diagnostic values of SOD, MPO, and 8-iso-PGF2α in induced sputum were found to exhibit high sensitivities and specificities in the prediction of COPD severity. Collectively, this study provides the first identification of the association between induced sputum metabolomic profiles and COPD severity, indicating the potential value of metabolomics in PPPM for COPD management. The study also reveals the correlation between glycerophospholipid metabolites and oxidative stress products and their value for predicting COPD severity.
BackgroundGlucocorticoid (GC) insensitivity is an important feature of severe and fatal asthma. Oxidative stress can induce phosphoinositide‐3‐kinase (PI3K) activation, contributing to the development of GC insensitivity in chronic airway diseases. However, the underlying molecular mechanism of PI3K in the pathogenesis of severe asthma remains unknown. MethodsWe isolated peripheral blood mononuclear cells (PBMCs) from 34 participants (12 patients with mild/moderate asthma, 10 patients with severe asthma, and 12 control subjects). H2O2 was used to stimulate the human macrophage line U937 to mimic the oxidative stress status in severe asthma. The ability of candidate compounds, namely, azithromycin, PI3K inhibitors (BEZ235 and LY294002) and a p38 MAPK inhibitor (BIRB796), to ameliorate GC insensitivity in severe asthma was evaluated. ResultsPBMCs from patients with severe asthma exhibited dose‐dependent and time‐dependent GC insensitivity, which correlated with reduced activity of histone deacetylase 2 (HDAC2) (p < 0.05) and elevated expression of proinflammatory genes [nuclear factor‐κB (NF‐κB) and activator protein‐1 (AP‐1)] (p < 0.01) compared with these parameters in the control group. The PI3K inhibitors (BZE235 and LY294002) significantly restored the GC sensitivity of PBMCs from patients with severe asthma. In vitro, the PI3K inhibitors (BZE235 and LY294002) ameliorated GC insensitivity in H2O2/TNFα‐induced IL‐8 release from U937 cells by independently restoring the activity of HDAC2 or inhibiting the activation of transcription factors. ConclusionsThis study demonstrates that PI3K inhibitors ameliorate GC insensitivity in severe asthma by restoring HDAC2 activity and inhibiting the phosphorylation of nuclear signaling transcription factors.
Background: Interleukin-27 (IL-27) modulates CD4+ T-cell differentiation and function. The aim of this study is to investigate the effect and molecular mechanisms of IL-27 on the development of asthma. Methods: IL-27 was intranasally administered in an ovalbumin-induced asthma model, and lung mononuclear cells and different Th cell classes were detected by fluorescence-activated cell sorting. The effect and mechanisms of IL-27 on human bronchial epithelial (HBE) cells were investigated by measuring changes in chemotactic factors, cytokines, transcription factors, and signaling pathways. Results: We found that intranasal administration of IL-27 could attenuate airway inflammation and hyperresponsiveness, upregulate the type 1 T helper (Th1)-T memory (Tm) cells and regulatory T (Treg) cells subgroups of lung tissue lymphocytes, and diminish the levels of type 2 T helper (Th2) cytokines. IL-27 upregulated the expression of C-C motif chemokine ligand 2 (CCL2), CCL3, and CCL4 in HBE cells and promoted the production of chemotactic factors to attract monocyte recruitment. Recruited monocytes secondarily secreted IL-27 to influence HBE cells in a positive feedback cycle. After IL-27 intervention, signal transducer and activator of transcription 1 (STAT1) phosphorylation increased, while STAT4 and STAT6 phosphorylation declined. Conclusions: Preventative intranasal administration of IL-27 can recruit more IL-27secreted monocytes to the airway and change the different T-cell classes in lung. The improved Th1 environment helps to alleviate Th2-mediated allergic asthma by repairing the STAT1 pathway but not the STAT4 pathway. K E Y W O R D S asthma, interleukin-27, Th1 environment J Cell Physiol. 2019;234:6642-6653. wileyonlinelibrary.com/journal/jcp 6642 |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.