Semiconductor membrane fuel cells are a new promising R&D for solid oxide fuel cells and proton ceramic fuel cells. There is a challenge of the electronic short circuit issue by using semiconductor to replace conventional electrolyte membrane. In this work, type II band alignment of the semiconductor heterostructure based on Mg-doped ZnO and ZnO can, on one hand, block electrons passing through the junction, and on the other hand, trigger the ionic properties of membrane to boost the fuel cell performance. The Mg doping into ZnO creates more oxygen vacancies at the surface of ZnO, leading to enhanced ionic transport, and meaningful fuel cell performance of 673 mW/cm2; while the Mg-doped ZnO/ZnO heterostructure fuel cell has delivered 997 mW/cm2 and OCV 1.04 V at 520 oC. It is worth highlighting that the constructed heterostructure interface, especially the band bending and constituted build-in electric field, plays a pivotal role in enhancing the ionic transport and suppressing the electron passing through the internal device. First principal calculations using density functional theory confirmed the doping of Mg and the formation of heterostructure with ZnO to help for enhancing charge carriers and separations. This work suggests that the constructed type II band alignment or the semiconductor heterostructure is useful for developing advanced fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.