Underwater acoustic (UWA) adaptive modulation (AM) requires feedback about channel state information (CSI) but the long propagation delays and time-varying features of UWA channels can cause the CSI feedback to be outdated. When the AM mode is selected by outdated CSI, the mismatch between the outdated CSI and the actual CSI during transmission degrades the performance and can even lead to communication failure. Reinforcement learning has the ability to learn the relationships between adaptive systems and the environment. This paper proposes a deep Q-network (DQN)-based AM method for UWA communication that uses a series of outdated CSI as the system input. Our study showed that it could extract channel information and select appropriate modulation modes in the expected channels more effectively than single Q-learning (QL) without needing a deep neural network structure. Furthermore, to mitigate any decision bias that was caused by partial observations of UWA channels, we improved the DQN-based AM by integrating a long short-term memory (LSTM) neural network, named LSTM-DQN-AM. The proposed scheme could enhance the DQN’s ability to remember and process historical input channel information, thus strengthening its relationship mapping ability for state-action pairs and rewards. The pool and sea experimental results demonstrated that the proposed LSTM-DQN-AM outperformed DQN-, QL- and threshold-based AM methods.
Orthogonal time frequency space (OTFS) is a novel two-dimensional (2D) modulation technique that provides reliable communications over time- and frequency-selective channels. In underwater acoustic (UWA) channel, the multi-path delay and Doppler shift are several magnitudes larger than wireless radio communication, which will cause severe time- and frequency-selective fading. The receiver has to recover the distorted OTFS signal with inter-symbol interference (ISI) and inter-carrier interference (ICI). The conventional UWA OTFS receivers perform channel estimation explicitly and equalization to detect transmitted symbols, which requires prior knowledge of the system. This paper proposes a deep learning-based signal detection method for UWA OTFS communication, in which the deep neural network can recover the received symbols after sufficient training. In particular, it cascades a convolutional neural network (CNN) with skip connections (SC) and a bidirectional long short-term memory (BiLSTM) network to perform signal recovery. The proposed method extracts feature information from received OTFS signal sequences and trains the neural network for signal detection. The numerical results demonstrate that the SC-CNN-BiLSTM-based OTFS detection method performs with a lower bit error rate (BER) than the 2D-CNN, FC-DNN, and conventional signal detection methods.
In the complex and dynamically varying underwater acoustic (UWA) channel, cooperative communication can improve throughput for UWA sensor networks. In this paper, we design a reasonable relay selection strategy for efficient cooperation with reinforcement learning (RL), considering the characteristics of UWA channel variation and long transmission delay. The proposed scheme establishes effective state and reward expression to better reveal the relationship between RL and UWA environment. Meanwhile, simulated annealing (SA) algorithm is integrated with RL to improve the performance of relay selection, where exploration rate of RL is dynamically adapted by SA optimization through the temperature decline rate. Furthermore, the fast reinforcement learning (FRL) strategy with pre-training process is proposed for practical UWA network implementation. The whole proposed SA-FRL scheme has been evaluated by both simulation and experimental data. The simulation and experimental results show that the proposed relay selection scheme can converge more quickly than classical RL and random selection with the increase of the number of iterations. The reward, access delay and data rate of SA-FRL can converge at the highest value and are close to the ideal optimum value. All in all, the proposed SA-FRL relay selection scheme can improve the communication efficiency through the selection of the relay nodes with high link quality and low access delay.
A large amount of data transmission is one of the challenges faced by communication systems. In this paper, we revisit the intelligent receiver consisting of a neural network, and we find that the intelligent receiver can reduce the data at the transmitting end while improving the decoding accuracy. Specifically, we first construct a smart receiver model, and then design two ways to reduce the data at the transmitter side, namely, end-of-transmitter data trimming and equal-interval data trimming, to investigate the decoding performance of the receiver under the different trimming methods. The simulation results show that the receiver still has an accurate decoding performance with a small amount of trimming at the end of the transmitter data, while the decoding performance of the smart receiver is better than that of the conventional receiver with complete data when the data is trimmed at equal intervals. Moreover, the receiver with equally-spaced data cropping has a lower BER when the data at the transmitter side is reduced by the same data length. This paper provides a new solution to reduce the amount of data at the transmitter side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.