In next-generation wireless networks, energy efficiency optimization needs to take individual link fairness into account. In this paper, we investigate a max-min energy efficiency-optimal problem (MEP) to ensure fairness among links in terms of energy efficiency in OFDMA systems. In particular, we maximize the energy efficiency of the worst-case link subject to the rate requirements, transmit power, and subcarrier assignment constraints. Due to the nonsmooth and mixed combinatorial features of the formulation, we focus on low-complexity suboptimal algorithms design. Using a generalized fractional programming theory and the Lagrangian dual decomposition, we first propose an iterative algorithm to solve the problem. We then devise algorithms to separate the subcarrier assignment and power allocation to further reduce the computational cost. Our simulation results verify the convergence performance and the fairness achieved among links by comparing the MEP with the existing algorithms. We also study a tradeoff between the network energy efficiency and fairness, similarly to the tradeoff between the sum rates and fairness.Index Terms-Energy efficiency, subcarrier assignment, power allocation, max-min fairness, OFDMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.