Since different incident waves will cause the same array to perform differently with respect to the wave energy converter (WEC), the parameters of the incident wave, including the incident angle and the incident wave number, are taken into account for optimizing the wave energy converter array. Then, the differential evolution (DE) algorithm, which has the advantages of simple operation procedures and a strong global search ability, is used to optimize the wave energy converter array. However, the traditional differential evolution algorithm cannot satisfy the convergence precision and speed simultaneously. In order to make the optimization results more accurate, the concept of an adaptive mutation operator is presented to improve the performance of differential evolution algorithm. It gives the improved algorithm a faster convergence and a higher precision ability. The three-float, five-float, and eight-float arrays were optimized, respectively. It can be concluded that the larger the size of the array is, the greater the interaction between the floats is. Hence, a higher efficiency of wave energy extraction for wave energy converter arrays is achieved by the layout optimization of the array of wave energy converters. The results also show that the optimal layout of the array system is inhomogeneously distributed and that the improved DE algorithm used on array optimization is superior to the traditional DE algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.