Short-term traffic speed prediction is a promising research topic in intelligent transportation systems (ITSs), which also plays an important role in the real-time decision-making of traffic control and guidance systems. However, the urban traffic speed has strong temporal, spatial correlation and the characteristic of complex nonlinearity and randomness, which makes it challenging to accurately and efficiently forecast short-term traffic speeds. We investigate the relevant literature and found that although most methods can achieve good prediction performance with the complete sample data, when there is a certain missing rate in the database, it is difficult to maintain accuracy with these methods. Recent studies have shown that deep learning methods, especially long short-term memory (LSTM) models, have good results in short-term traffic flow prediction. Furthermore, the attention mechanism can properly assign weights to distinguish the importance of traffic time sequences, thereby further improving the computational efficiency of the prediction model. Therefore, we propose a framework for short-term traffic speed prediction, including data preprocessing module and short-term traffic prediction module. In the data preprocessing module, the missing traffic data are repaired to provide a complete dataset for subsequent prediction. In the prediction module, a combined deep learning method that is an attention-based LSTM (ATT-LSTM) model for predicting short-term traffic speed on urban roads is proposed. The proposed framework was applied to the urban road network in Nanshan District, Shenzhen, Guangdong Province, China, with a 30-day traffic speed dataset (floating car data) used as the experimental sample. Results show that the proposed method outperforms other deep learning algorithms (such as recurrent neural network (RNN) and convolutional neural network (CNN)) in terms of both calculating efficiency and prediction accuracy. The attention mechanism can significantly reduce the error of the LSTM model (up to 12.4%) and improves the prediction performance.
Understanding the determinants of transfer ridership is important for providing insights into improving the attractiveness of transit systems and building reliable and resilient metro stations. This study focuses on the transfer ridership between bus and metro systems under different dates and severe weather conditions to quantify the impacts of various attributes on the transfer ridership of different transfer modes (metro-to-bus and bus-to-metro). A multivariate generalized Poisson regression (GPR) model is applied to investigate the effects of critical factors on the transfer ridership of different transfer modes on weekdays, holidays, and typhoon days, respectively. The results indicate that the transfer-related variables, real-time weather, socioeconomic characteristics, and built environment significantly affect the transfer ridership. Concretely, the influence of socioeconomic and demographic factors on transfer ridership is the most significant on different types of dates, which is approximately 1.19 to 9.28 times that of the other variables. Weather variables have little effect on transfer ridership on weekdays, but they have a more significant impact on the transfer ridership on holidays and typhoon days. Specifically, during typhoons, transfer ridership is more affected by the weather factors: the coefficients are about 2.36 to 4.74 times higher than that in the other periods. Moreover, under strong wind speed, heavy rain, and high-temperature conditions, transfer ridership of the metro-to-bus mode significantly increases. In contrast, transfer ridership of the bus-to-metro mode rapidly decreases. Additionally, the peak hours have a strong positive influence on the transfer ridership, and the average hourly transfer ridership during peak hours is 1.16 to 4.02 times higher than that during the other periods. These findings indicate that the effect of each factor on transfer ridership varies with dates and transfer modes. This can also provide support for improving metro stations and increasing the attractiveness of public transport.
Despite the extensive efforts, accurate traffic time series forecasting remains challenging. By taking into account the non-linear nature of traffic in-depth, we propose a novel ST-CRMF model consisting of the Compensated Residual Matrix Factorization with Spatial-Temporal regularization for graph-based traffic time series forecasting. Our model inherits the benefits of MF and regularizer optimization and further carries out the compensatory modeling of the spatial-temporal correlations through a well-designed bi-directional residual structure. Of particular concern is that MF modeling and later residual learning share and synchronize iterative updates as equal training parameters, which considerably alleviates the error propagation problem that associates with rolling forecasting. Besides, most of the existing prediction models have neglected the difficult-to-avoid issue of missing traffic data; the ST-CRMF model can repair the possible missing value while fulfilling the forecasting tasks. After testing the effects of key parameters on model performance, the numerous experimental results confirm that our ST-CRMF model can efficiently capture the comprehensive spatial-temporal dependencies and significantly outperform those state-of-the-art models in the short-to-long terms (5-/15-/30-/60-min) traffic forecasting tasks on the open Seattle-Loop and METR-LA traffic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.