This study explores whether blood tumor mutational burden estimated by a next-generation sequencing gene panel is associated with clinical outcomes of patients with non–small cell lung cancer treated with anti–programmed cell death 1 and anti–programmed cell death ligand 1 agents.
Biomarkers such as programmed death receptor 1 ligand (PD-L1) expression, tumor mutational burden (TMB), and high microsatellite instability are potentially applicable to predict the efficacy of immune checkpoint blockade (ICB). However, several challenges such as defining the cut-off value, test platform uniformity, and low frequencies limit their broad clinical application. Here we identify comutations in the DNA damage response (DDR) pathways of homologous recombination repair and mismatch repair (HRR-MMR) or HRR and base excision repair (HRR-BER; defined as co-mut) that are associated with increased TMB and neoantigen load and increased levels of immune gene expression signatures. In four public clinical cohorts, co-mut patients presented a higher objective response rate and a longer progression-free survival or overall survival than co-mut patients. Overall, identification of DDR comutations in HRR-MMR or HRR-BER as predictors of response to ICB provides a potentially convenient approach for future clinical practice. Identification of comutations in specific DDR pathways as predictors of superior survival outcomes in response to immune checkpoint blockade provide a clinically convenient approach for estimation of tumor mutational burden and delivery of ICB therapy. .
Introduction: Blood-based tumor mutational burden (bTMB) has been studied to identify patients with NSCLC who would benefit from anti-programmed cell death protein 1 (anti-PD-1) or anti-programmed death ligand 1 (anti-PD-L1) therapies. However, it failed to predict overall survival (OS) benefits, which warrants further exploration.Methods: Three independent cohorts of patients with NSCLC treated with immunotherapy were used in this study. A new bTMB algorithm was first developed in the two independent cohorts (POPLAR, N ¼ 211, and OAK, N ¼ 462) and further validated in the third National Cancer Center (NCC) cohort (N ¼ 64).Results: bTMB-H (bTMB cutoff point) was not associated with favorable OS after immunotherapy regardless of the cutoff points in either the POPLAR and OAK or the NCC cohorts (p > 0.05) owing to its correlation with the amount of circulating tumor DNA, which was associated with poor OS. In the POPLAR and OAK cohorts, with allele frequency (AF) adjustment, a high AF bTMB (HAF-bTMB, mutation counts with an AF > 5%) was strongly correlated with the amount of circulating tumor DNA (Pearson r ¼ 0.65),
Background
Defects in DNA damage repair (DDR) system may lead to genomic instability and manifest as increased immunogenicity. DDR deficiency is prevalent in ovarian cancer (OvCa); however, the association of DDR mutation with immune profiles in OvCa remains largely unknown. This knowledge will provide an essential basis to the rational design of biomarker‐guided immune combination therapy of OvCa in the future.
Methods
Whole‐exome sequencing data of 587 OvCa from The Cancer Genome Atlas (TCGA) were used to determine the expression profiles of 47 immune‐related genes and the abundance of tumor‐infiltrating immune cells. A Chinese OvCa cohort (n = 220) tested by next‐generation sequencing (NGS) was used to validate the association between DDR status and tumor mutation burden (TMB).
Results
A total of 19.3% in TCGA cohort and 25.9% in Chinese cohort harbored at least one DDR somatic mutation. DDR deficiency exhibited a distinct immune profile with significant higher expression levels of PTPRCAP, CCL5, IFI16, LAG3, IL15RA, and GBP1 in OvCa in the TCGA cohort. Different DDR pathway deficiency displayed various immune profiles. Increased levels of Th1 cells, TMB, and neoantigen were also observed in DDR‐deficient tumors.
Conclusions
DDR deficiency was associated with specific immune signatures in OvCa. Our findings emphasize the urgent need for biomarker‐guided rational immune combination therapy to maximize the OvCa patients who could benefit from immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.