KIF1A is a critical cargo transport motor within neurons. More than 100 known mutations result in KIF1A-associated neurological disorder (KAND), a degenerative condition for which there is no cure. A missense mutation, P305L, was identified in children diagnosed with KAND, but the molecular basis for the disease is unknown. We find that this conserved residue is part of an unusual 310 helix immediately adjacent to the family-specific K-loop, which facilitates a high microtubule-association rate. We find that the mutation negatively affects several biophysical parameters of the motor. However, the microtubule-association rate of the motor is most markedly affected, revealing that the presence of an intact K-loop is not sufficient for its function. We hypothesize that the 310 helix facilitates a specific K-loop conformation that is critical for its function. We find that the function of this proline is conserved in kinesin-1, revealing a fundamental principle of the kinesin motor mechanism.
KIF1A, a kinesin-3 family member, plays critical roles as a long-distance cargo-transporter within neurons. Over 100 known KIF1A mutations in humans result in KIF1A Associated Neurological Disease (KAND), developmental and degenerative neurological conditions for which there is no cure. A de novo missense mutation, P305L, was recently identified in several children diagnosed with KAND, but the underlying molecular basis for the disease phenotype is unknown. Interestingly, this residue is highly conserved in kinesin-family proteins, and together with adjacent conserved residues also implicated in KAND, forms an unusual 310-helical element immediately C-terminal to loop-12 (L12, also known as the K-loop in KIF1A) in the conserved kinesin motor core. In KIF1A, the disordered K-loop contains a highly charged insertion of lysines that is thought to endow the motor with a high microtubule-association rate. Here, we characterize the molecular defects of the P305L mutation in KIF1A using genetic, biochemical, and single-molecule approaches. We find the mutation negatively impacts the velocity, run-length, and force generation of the motor. However, a much more dramatic effect is observed on the microtubule-association rate of the motor, revealing that the presence of an intact K-loop is not sufficient for its function. We hypothesize that an elusive K-loop conformation, mediated by formation of a highly conserved adjacent 310-helix that is modulated via P305, is critically important for the kinesin-microtubule interaction. Importantly, we find that the function of this proline is conserved in the canonical kinesin, KIF5, revealing a fundamental principle of the kinesin motor mechanism.
KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.
Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.