Inspired by nacre, this is the first time that using the cross-linking of alginate with Ca ions to fabricate organic-inorganic nacre-inspired films we have successfully prepared a new class of Ca ion enhanced montmorillonite (MMT)-alginate (ALG) composites, realizing an optimum combination of high strength (∼280 MPa) and high toughness (∼7.2 MJ m) compared with other MMT based artificial nacre. Furthermore, high temperature performance of the composites (with a maximum strength of ∼170 MPa at 100 °C) along with excellent transmittance, fire retardancy, and unique shape memory response to alcohols could greatly expand the application of the mutilfunctional composites, which are believed to show competitive advantages in transportion, construction, and insulations, protection of a flammable biological material, etc.
Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.
Pure phase anatase TiO2nanoparticles with sizes of 5–8 nm and varying crystallinity were synthesized in supercritical isopropanol/water using a continuous flow reactor. Their photodegradation of rhodamine B (RhB) was evaluated under visible light irradiation. The as-prepared TiO2nanoparticles show much higher photodegradation efficiencies than commercial Degussa P25 TiO2. Moreover, the photodegradation of RhB on the as-prepared TiO2follows a different process from that on P25 TiO2, quicker N-deethylation and slower cleavage of conjugated chromophore structure. Based on PXRD, TEM, and BET measurements, these two photodegradation properties have been explained by the physicochemical properties of TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.