Are leaders made or born? Leader–follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader–follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader–follower relationships were learned only when strong haptic feedback was introduced. This phenomenon occurred despite participants not being informed that they were interacting with each other and the large number of equally-valid alternative dyadic coordination strategies. We demonstrate the emergence of consistent leader–follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader–follower relationships in our society.
Are leaders made or born? Leader-follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader-follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader-follower relationships were learned despite participants not being informed that they were interacting with each other, but only when strong haptic feedback was introduced. For the first time, we demonstrate the emergence of consistent leader-follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader-follower relationships in our society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.