We describe the design and implementation of a high-data-rate high-capacity digital holographic storage disk system. Various system design trade-offs that affect density and data-rate performance are described and analyzed. In the demonstration system that we describe, high-density holographic recording is achieved by use of high-resolution short-focal-length optics and correlation shift multiplexing in photopolymer disk media. Holographic channel decoding at a 1-Gbit/s data rate is performed by custom-built electronic hardware. A benchmark sustained optical data-transfer rate of 10 Gbits/s has been successfully demonstrated.
We have evaluated the channel capacity of OAM-based FSO link under a strong atmospheric turbulence regime when adaptive optics (AO) are employed to correct the wavefront phase distortions of OAM modes. The turbulence is emulated by the Monte-Carlo phase screen method, which is validated by comparison with the theoretical phase structure function. Based on that, a closed-loop AO system with the capability of real-time correction is designed and validated. The simulation results show that the phase distortions of OAM modes induced by turbulence can be significantly compensated by the real-time correction of the properly designed AO. Furthermore, the crosstalk across channels is reduced drastically, while a substantial enhancement of channel capacity can be obtained when AO is deployed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.