BackgroundAlterations in the composition of gut microbiota - known as dysbiosis - has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice.Methodology/Principal FindingsMice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters.Conclusions/SignificanceSupplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.
Potato tubers were evaluated as a source of antioxidants and minerals for the human diet. A genetically diverse sample of Solanum tuberosum L. cultivars native to the Andes of South America was obtained from a collection of nearly 1000 genotypes using microsatellite markers. This size-manageable collection of 74 landraces, representing at best the genetic diversity among potato germplasm, was analyzed for iron, zinc, calcium, total phenolic, total carotenoid, and total vitamin C contents. The hydrophilic antioxidant capacity of each genotype was also measured using the oxygen radical absorbance capacity (ORAC) assay. The iron content ranged from 29.87 to 157.96 microg g-1 of dry weight (DW), the zinc content from 12.6 to 28.83 microg g-1 of DW, and the calcium content from 271.09 to 1092.93 microg g-1 of DW. Total phenolic content varied between 1.12 and 12.37 mg of gallic acid equiv g-1 of DW, total carotenoid content between 2.83 and 36.21 microg g-1 of DW, and total vitamin C content between 217.70 and 689.47 microg g-1 of DW. The range of hydrophilic ORAC values was 28.25-250.67 micromol of Trolox equiv g-1 of DW. The hydrophilic antioxidant capacity and the total phenolic content were highly and positively correlated (r = 0.91). A strong relationship between iron and calcium contents was also found (r = 0.67). Principal component analysis on the studied nutritional contents of the core collection revealed that most potato genotypes were balanced in terms of antioxidant and mineral contents, but some of them could be distinguished by their high level in distinct micronutrients. Correlations between the micronutrient contents observed in the sample and the genetic distances assessed by microsatellites were weakly significant. However, this study demonstrated the wide variability of health-promoting micronutrient levels within the native potato germplasm as well as the significant contribution that distinct potato tubers may impart to the intake in dietary antioxidants, zinc, and iron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.