. The percentage of above‐canopy Photosynthetic Photon Flux Density (%PPFD) was measured at 0, 50 and 100 cm above the forest floor and above the main understory vegetation in stands of (1) pure Betula papyrifera (White birch), (2) pure Populus tremuloides (Trembling aspen), (3) mixed broad‐leaf‐conifer, (4) shade‐tolerant conifer and (5) pure Pinus banksiana (Jack pine) occurring on both clay and till soil types. %PPFD was measured instantaneously under overcast sky conditions (nine locations within each of 29 stands) and continuously for a full day under clear sky conditions (five locations within each of eight stands). The percentage cover of the understory layer was estimated at the same locations as light measurements. Mean %PPFD varied from 2% at the forest floor under Populus forests to 15% above the understory vegetation cover under Betula forests. Percent PPFD above the understory vegetation cover was significantly higher under shade intolerant tree species such as Populus, Betula and Pinus than under shade tolerant conifers. No significant differences were found in %PPFD above the understory vegetation cover under similar tree species between clay and till soil types. The coefficient of variation in %PPFD measured in the nine locations within each stand was significantly lower under deciduous dominated forests (mean of 19%) than under coniferous dominated forests (mean of 40%). %PPFD measured at the forest floor was positively correlated with %PPFD measured above the understory vegetation and negatively correlated with cumulative total percent cover of the understory vegetation (R2 = 0.852). The proportion of sunflecks above 250 and 500 mmol m–2 s–1 was much lower and %PPFD in shade much higher under Populus and Betula forests than under the other forests. Differences in the mean, variability and nature of the light environment found among forest and soil types are discussed in relation to their possible influences on tree succession.
Although radiofrequency facet joint denervation may provide some short-term improvement in functional disability among patients with chronic low back pain, the efficacy of this treatment has not been established.
Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate of paludification. At the landscape scale, the fire regime (frequency and severity) controls paludification and forest productivity through its effect on soil organic layers. Implications for global carbon budgets and sustainable forestry are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.